
Version 2.0

CORE

CORE FADA - Table of contents

Table of contents

Table of contents...2

Foreword...4

Introduction..5
Client-server architectures..5
The Jini Networking Technology...8
The FETISH network...16
FADA enters the picture...17

FADA in depth...19
FADA Topology..22
FADA behavior...26
Service Directory Architecture ..28

Graphical overview..31
Diagram description...32

FADA communications layer...35
RMI and the new FADA communications layer...38

FADA mechanisms...41
Discovery mechanism...41
Registration mechanism..43
Lease expiration mechanism...46
Lease renewal mechanism..46
Lease cancellation mechanism..53
Lookup mechanism..53
Retrieval of proxies..59

The FADA stub - skeleton compiler...62
Use of different communication protocols...64

Multicast extensions..69
Multicast events...69

Events hierarchy..70
Multicast discovery..71
Multicast Announcement...72
Registration events..73

Code Examples..75
Discovering nodes using multicast discovery..75
Registering as RegistrationEvent listener ...76
Registering a Service...78

How does the net.fada.directory.SignedMarshalledObject work?...81
Deregistering a service..82
Looking up a Service..83

How does the matching mechanism work?...85
Complete example...85

Service provider side...86
Client side..91
Notes about JAVA sandbox and dynamic code loading...92

The FADA stub - skeleton compiler: an example...98
Easier development of the server: use of fadagen..98
Skeleton/stub and proxies...102

M.Vidal, J. Sánchez, J. Aparicio 2

CORE FADA - Table of contents

FADA security wrappers...109

Security background..110
Computer Security...110
Decentralized trust management..110
Java Security Architecture..111
Java language and platform security...112
Resource access control..113

Requirements for FADA Security..115
FADA network security functionality..115
FADA's users security functionality...116

FADA and Federations..117

Dynamic and secure loading of remote code in FADA119
SignedMarshalledObject..119

SignedMarshalledObject's structure..119
Step by step: Secure instantiation of a remote object in FADA..121
SignedMarshalledObject instantiation...124

Helper classes for certificates and keys manipulation..127

Default FADA node security wrapper implementation129
Secure communications between Fada node and its proxy......................................129
Notes about policy files configuration...132

Java policy files..132
Fada policy file...133

Velocity and FADA Web based management...135
Templates and variables...135
Web based management: Themes..138

Fada Plugin Architecture..140

Installation and Setup..141

Administration of the FADA..145

Appendix A...148
A example of FADA policy file..148

Bibliography..150
Graph algorithms...150
Jini over Internet..150
The Kalman filter..150
Network delays and algorithms...151
Jini..151
RMI...151
Java..151
Java based technologies..151
Other..151
Security background..153

M.Vidal, J. Sánchez, J. Aparicio 3

CORE FADA - Foreword

Foreword

This is the complete FADA manual. It includes all information
needed to understand what FADA is, what it is designed for, how it
works, and how to install it and use it.

The FADA started as a series of patches to enable the use of the Jini
Networking Technology on the Internet. Later on, it was decided to
completely drop the Jini reference implementation, and start a work
on its own, because the size of patches started growing so much that
it added considerable weight to the already heavy Jini reference
implementation.

In its initial stages it was seen that, no matter how many patches
were applied, FADA was lacking control over the execution of the Jini
reference implementation, so parts of it were rewritten from scratch.
A few internal releases later it was realized that there was so little left
of the Jini reference implementation it was no use to keep using it.
That day, the FADA entered its adulthood.

Along with the primary use of the FADA, a set of other technologies
that surrounded the concept of FADA materialized as tools and
utilities useful for the service provider programmer. Some of them
have been discarded, but the rest have been included in this release
of the document Core FADA, along with some examples of its use.

We hope you find the information contained here complete and
useful.

Enjoy it.

The FADA development team.

M.Vidal, J. Sánchez, J. Aparicio 4

CORE FADA - Introduction

Introduction

Networking software has been a little around, and some drawbacks
and intrinsic difficulties have been identified in this time. With the
explosion of the Internet, favored mainly by the appearance of the
World-Wide-Web in 1990, the network has become the arena of new
business. This trend has pushed the development of new or not-that-
new networking technologies.

One of the projects that have appeared in the new information
society is the FETISH project. The FETISH project is an open
distributed platform for the exchanging of services and applications,
which has been developed through an European Commission IST
Frame Program 5th funded project using the SUN JINI NetworkTM

Technology. In words of the FETISH project officer, “our mission is to
turn the scattered tourism enterprises, using disparate systems and
platforms, into a seamless network available from a common access
point”.

Throughout the development of the FETISH project, one of its
modules, called the FADA, has become an entity on its own. The
FADA is the Federated Autonomus Directory Architecture. Federated,
because it is an architecture composed of several computing entities
referred to as FADA nodes, that work together to perform the
system’s functionality. Directory, because it acts as a directory or
repository of service proxies. Autonomous because it is not
necessary human administration for evolving the network created by
the nodes interconnected. Architecture because the term FADA
doesn’t only refer to a piece of software, but to a whole system of
software entities.

Client-server architectures

Let’s start with the basics. A common client-server application is
composed of two entities, named client and server. The client is a
software entity (a piece of software) that requests some functionality
(by a human user, or by yet another client) that it can’t provide on its
own (for lack of computing resources, or lack of secondary storage,
or whatever reasons). Common client-server architectures widely
used and known are, for example, the Web, in which a program, the
web browser acts as the client, requesting contents in the form of
HTML documents to web servers, that play the role of the server.

M.Vidal, J. Sánchez, J. Aparicio 5

CORE FADA - Introduction

Other examples include the relationship between a database
management system and the consumers (and providers) of data from
the database. The DNS service is also a client-server architecture, in
which the client wants to know the mapping between a name and the
corresponding registered IP address. The DNS server contains that
information, so the client simply fills in a request that is then sent to
the DNS server, which performs whatever computing is needed and
returns a response, in a form understandable by the client.

Client-server architectures have many pros. One of them is that, by
decoupling the computation in two entities, these two roles need not
to be executing in the same machine, so clients can be
computationally poorer machines than servers. Another pro is that a
server may accept requests from more than one client, thus
maximizing resources usage.

However, client-server architectures also have some cons. First, if
the server is not working (the machine that hosts it is down, or the
software is broken) the clients can not perform the required
computation, no matter if the clients’ machines are perfectly well.
Another con is that if the server and the client reside in different

machines another point of failure is introduced: the network.

An annoying feature of client-server architectures hosted on different
machines is that, if the server fails, there’s no way for clients to know
it until they perform the request. Depending on the type of service
and/or failure of the server, the client will get an error, or the
connection will time out. Only after time has been wasted on part of

M.Vidal, J. Sánchez, J. Aparicio 6

Server

Client

1- Server location must be known
2- Server may be unavailable

3- Protocol must be known to client

CORE FADA - Introduction

the client it will realize that the computation can not be completed by
that server, and so it is up to the client (the software or the human
behind) to decide whether to give up or try with another server (if
such another server exists). Wouldn’t it be nice to know in advance
whether the server is working without the need to perform the
request and watch it fail?

Another characteristic of client-server architectures is that the client
must know in advance how to contact the server. The service may
(or may not) provide a method to find the location (in the network) of
the server. That’s one of the main reasons for the proliferation of
portals and search engines for the web: to find the host that contains
the information needed.

What’s more, the client must implement the protocol understood by
the server, so multitude of servers imply there are multitude of client
implementations. Even servers that provide similar functionality may
use different protocols for communication with clients, so two clients
that would otherwise be virtually identical with respect to the
calculation performed differ totally with respect to the protocol
implemented.

To solve some of these problems, in 1998 Sun Microsystems Labs
developed a networking technology that eliminates or otherwise
alleviates some of these drawbacks.

M.Vidal, J. Sánchez, J. Aparicio 7

CORE FADA - Introduction

The Jini Networking Technology.
Jini(TM) network technology is an open architecture that enables

developers to create network-centric services -- whether
implemented in hardware or software -- that are highly adaptive to
change. Jini technology can be used to build adaptive networks that
are scalable, evolvable and flexible as typically required in dynamic
computing environments.

The Jini Networking Technology takes the whole problem of client-
server based applications, makes some basic assumptions, creates
some abstractions, and provides solutions for the aforementioned
problems of client-server architectures.

Some of the basic assumptions are:

– The client is interested in the service provided by the server,
not in the protocol involved to perform requests. That’s an
unavoidable, but secondary, item.

– The client would like to be agnostic as to what server it needs
to contact in order to perform the request. All it knows is the
type of service. All it wants to know is the type of service.
The name or location of the server that provides the service is
an implementation detail the client would be quite happy to be
completely unaware of.

– The client wants to know in advance if a certain service is
available. That requirement is twofold: the client wants to
know what services are available, and the client wants to
know what servers not to contact, because they are not
working. Put in other words, the clients wants the list of only
working servers.

– The client doesn’t want to be forced to know the
implementation details of the protocol for the communication
with the server. Or, if that is not possible, the client would like
the protocol to be as simple and consistent as possible. The
protocol used by the client should be related to the business
logic performed by the client, and not to the implementation
details needed by the communications protocol.

– The solutions should work with existing working services
without modification, or at least keeping those modifications
to a minimum.

M.Vidal, J. Sánchez, J. Aparicio 8

CORE FADA - Introduction

The Jini Networking Technology was made possible thanks to the
existence of the Java programming language. In fact, Jini is
completely based around Java. This, however, doesn’t mean that the
servers must be implemented in Java at all. However, clients must
have a minimum knowledge of Java in order to interact with Jini.

Java provides some functionalities that made possible the
appearance of Jini. The related functionalities are, mainly, the
following:

– Java programs (called classes) execute in a platform
independent virtual machine. That is, the same Java class
executes well on different hardware platforms, with different
operating environments, provided that an implementation of
the Java Virtual Machine (JVM from now on) is available for a
particular hardware-operating environment combination.

– Java classes are able to be converted to/from a stream of
bytes. This stream of bytes can travel across the network and
be reconstituted in other place (another JVM). This portability
of classes affects both the class data and the class code.

– Java provides an easy mechanism to define the operations
performed by a class, even when that class is completely
unknown to the user of that class. That is, if the user of a
class knows the names of the methods that class provides, it
doesn’t matter where that class has come from: the user of
the class will be able to call such methods. Java does so by

defining interfaces, that is, classes with just the methods’
names, parameters and return types, with no implementation.

If a class implements a certain interface then it is
guaranteed that those methods will do something when
invoked upon the class. That means that, if a user gets an
instance of a class it doesn’t know, but he is assured the class
implements an interface he knows, he can call the interface
methods on the class, and the class methods will be executed
just as if he had known the class from the beginning.

Jini defines a service as a Java interface. That is, it translates
requests to the server to invocation of methods of the interface.

M.Vidal, J. Sánchez, J. Aparicio 9

CORE FADA - Introduction

Jini also decouples the interaction between the client and the server

by interposing an agent, called the service proxy. This service
proxy is a Java class that implements a certain service interface,
known to the client, and therefore the client is able to invoke its
methods, although the client doesn’t know implementation details of
the proxy, such as the class name.

The service proxy methods perform the actual request to the server.
In this way, the protocol details are hidden among the
implementation details of the proxy, thus isolating the client from
them.

To provide the client with a fresh list of working services, Jini provides
a central repository (many independent instances of which may be
present in a network) that may be polled by using some Jini utility
Java classes. These classes make no mention at all about the actual
location of the central repository or the servers that provide the
actual services, so the client is completely isolated from those
details.

M.Vidal, J. Sánchez, J. Aparicio 10

JINI

Client

Server

Service
Proxy

The server
registers the

proxy

The client
performs a

lookup

The client recieves
the proxy in

response

CORE FADA - Introduction

The service proxies that interact with the servers are known to the
Jini central repository (called lookup server, LUS from now on)
because the service providers have registered them in the LUS. The
registration involves the creation of the service proxy by the service
provider. Once the service proxy has been created, the instance is
converted to a stream of bytes and sent to the central repository,
along with some identification information.

These registrations, though, are not permanent. By giving another
turn to the screw, the designers of Jini decided here to avoid another
of the main annoyances of client-server architectures: non-working
servers.

When a service provider registers a service proxy in a LUS the latter

provides the former with an entity called lease. The lease is an
entity that represents the compromise of the service provider to
notify the Jini LUS that the server is working. The LUS grants the
service provider that the service proxy will be kept in the LUS for a

M.Vidal, J. Sánchez, J. Aparicio 11

Client

Server

Service
Proxy

Private protocol
and

implementation

Java Interface method
calls, parameters and

return types

1- The client ignores the server location and protocol.
2- The service proxy uses whatever protocol.
3- Several server types and protocols
may implement the same service interface.

CORE FADA - Introduction

certain amount of time. After that time, the service proxy will be

silently discarded from the LUS, unless the service provider renews
the lease for an extend amount of time. The lease renewal
procedure is easily performed by the service provider, because the
lease is another Java class that contains the suitable method.

That is, the service provider registers a service proxy in the LUS and
gets in return a Java class that implements the standard Jini interface

Lease. The actual class returned by the LUS is of little interest for
the service provider, because all he wants to do is invoke the

methods defined in the Lease interface. Yes, the actual class
returned by the LUS is a proxy for the lease.

The Lease interface has methods to perform the renewal of the lease,
and thus extending the life period of the registration of the
associated service proxy in the LUS. It also provides methods to
cancel that lease, thus notifying the LUS that the associated service
proxy must be discarded and deleted from the LUS internal registry.

The renewal of lease must be done by the service server itself,
whenever possible. In this way, should the server crash (and
therefore be unable to notify anyone about its own decease) the

M.Vidal, J. Sánchez, J. Aparicio 12

JINIServer Service
Proxy

Lease
Proxy

Renewal Request
(Java interface
method call)

Renewal Request
(Private protocol)

Service Proxy
Registration

CORE FADA - Introduction

lease would eventually expire, and the service proxy for the now
deceased server would be deleted, without requiring any human
intervention to maintain the LUS internal registry.

The lease can also be canceled (by calling the appropriate methods)
if the service knows is about to be stopped. In this way no clients will
get the service proxy for the service that is about to stop functioning.

In cases where the lease can not be renewed by the server itself
(because the server is not written in Java, for example) it is possible
to construct a wrapper in Java that polls the server about its state, or
uses whatever means to know if the server is working. Should this
wrapper detect that the server is not working anymore it should
cancel the lease inmediately. If both the server and the wrapper are
executing in the same machine, the situation is still better, because
even a hardware failure that stops both the service and the wrapper
will cause the lease to expire eventually.

Evidently, the higher the lease time, the higher the time a non-
working service will be available to clients that request its service
proxy, so the idea is to keep lease times as small as possible. Note

M.Vidal, J. Sánchez, J. Aparicio 13

 2- No lease
renewal
request

JINI

Service
ProxyServer

Lease
Proxy

3- Timeout, service
proxy is

deregistered

1- Server crash

CORE FADA - Introduction

also that small lease times require a more frequent renewal of the
lease.

Another side benefit of the Jini technology is that it enables the
interaction of services with the absence of human intervention. As
computer software is able to discover network services there’s no
need for a human agent to initially configure a server, or to
reconfigure it after a failure of one of its components.

Well, that’s roughly how Jini accomplished its goals. What has FADA
to do with this all?

Although Jini serves its purpose, it still has some drawbacks that
rendered it unusable for Wide Area Networks (WAN), such as the
Internet. The main drawbacks are:

– Jini was primarily designed to work in a Local Area Network
(LAN). Most LANs support some sort of broadcast or multicast,
a mechanism in which one participant of the network is able to
send a single message that is received by all (in case of a
broadcast) or a group (in case of a multicast) of the other
participants in the LAN. This is an efficient means of
communication with a large group of machines. However,
multicast is almost never usable on the Internet.

– The multicast mechanism is heavily used in Jini, and so most
of the Jini procedures are impossible to perform in the
Internet.

– The network delays of a LAN are typically in the order of
milliseconds, or tenths of milliseconds. In the Internet, the
network delays are typically in the order of seconds or tenths
of seconds, a 1000:1 ratio.

– Some mechanisms and policies used in Jini rely on the fact
that network delays are in the order of milliseconds or tenths
of milliseconds. Therefore, those mechanisms and policies
may not be used in the Internet.

– Jini also relies on the fact that every computer in the LAN can
reach every other computer, or at least that all computers in
the LAN that want to participate in the Jini Networking
Technology can reach one another. However, in the internet
this is not always true (and most of the time decidedly untrue),
because of the firewalls.

M.Vidal, J. Sánchez, J. Aparicio 14

CORE FADA - Introduction

– A firewall put around a network that is attached to the Internet
may allow only some kind of network traffic to travel on
certain ports of certain computers in the LAN. However, Jini
needs arbitrary access to arbitrary ports in arbitrary hosts.
This is because of the way in which the Java Remote Method
Invocation (RMI) mechanism works. Jini relies heavily on RMI.

Jini allows the presence of various LUS in the same LAN. However,
those LUSes don’t cooperate to provide a more flexible functionality.
It is up to the client of Jini to discover all those services and use them
as independent registries, therefore overloading the client.

These considerations conclude that it is not possible to use Jini as it
comes in an Internet environment. However, that’s exactly what
FETISH needed.

M.Vidal, J. Sánchez, J. Aparicio 15

CORE FADA - Introduction

The FETISH network
The FETISH network is an open distributed platform for the

exchanging of services and applications, which has developed
through an EC funded project (IST-1999-13015) based on the Sun JINI
Network(TM) Technology.

At present, the FETISH platform is being tested in real commercial
environments.

"Our mission is to turn the scattered tourism enterprises, using
disparate systems and platforms, into a seamless network available
from a common access point". Following the tourism business
challenges, the platform is a constant changing environment,
allowing inter-operability and using Open Source technology for
service connections through wired and wireless devices.

The FETISH network provides the tourism enterprises with a range of
competitive advantages, such as:

– Electronic distribution efficiency.

– Faster deployment and development of new technologies.

– Lower IT costs.

– High-value applications availability without maintenance and
integration tasks.

It is evident that Jini, as it comes, can’t be readily used for the FETISH
purposes.

M.Vidal, J. Sánchez, J. Aparicio 16

CORE FADA - Introduction

FADA enters the picture
Jini, as it comes in the reference implementation available from

Sun, is not suitable for systems that must cross firewalls. It requires
a quirky network setup and a not-so-obvious parameter setup on the
client side. Tests performed on such environment showed poor
reliability and performance. It was decided to drop the reference
implementation and start software development from scratch.
However, the concepts highlighted by the Jini Networking Technology
are sound ones, so most of them have been kept, where applicable,
and others have been extended in the development of the FADA.

So FADA was designed to overcome most of the limitations of Jini.
Some of its key points are the following:

– FADA is an architecture of Lookup Servers that work together.
Performing a lookup request on a FADA node will obtain the
matching responses from that FADA node as well as from the
neighboring FADA nodes, without any additional intervention
of the client software.

– FADA allows the integration of services as well as Jini does, by
providing similar mechanisms for service discovery.

– Each FADA node uses one and only one fixed port for
communications, so it is easy for network administrators to
select a free port and give it to the FADA node that will lie
behind the firewall.

– FADA doesn’t use Java RMI to perform remote communication,
neither from the client to the FADA architecture, nor within the
FADA architecture itself. Instead it uses a mechanism
resembling the standard Java RMI, modified to work
transparently over HTTP. Therefore, clients of the FADA can
be in a firewalled network, as long as they have access to the
Internet via HTTP, which is widely common.

– FADA makes no assumptions about the network delay.
Instead it uses mathematical tools (Kalman filter) to model
that delay, and adjusts itself to the properties of the
environment it is working on. These tools are adaptive, so
changes in the environment don’t cause FADA nodes to fail.

– FADA doesn’t rely on a broadcast medium to perform its
operations. It can, therefore, be used in the Internet.

M.Vidal, J. Sánchez, J. Aparicio 17

CORE FADA - Introduction

– FADA provides an HTML over HTTP view of its state. A simple
web browser can be used to query the state of a FADA node,
and even to administer it. There’s no need for specialized
separate tools.

– RMI classes mobility require that the class files that define a
class behavior (its code) must be made available through a
separate HTTP server. FADA relies on class mobility, but acts
as its own HTTP server, therefore requiring no additional
software.

M.Vidal, J. Sánchez, J. Aparicio 18

CORE FADA - FADA in depth

FADA in depth

FADA stands for “Federated Advanced Directory Architecture”. It is a
virtual Lookup Server in the sense that different Lookup Servers
(FADA nodes) will work together to provide the LookupServer
functionality from any entry point. Also, any of these Lookup Servers
will cooperate with the rest to find implementations of services.

This is the major difference with Jini. With Jini you can have as many
Lookup Servers as you want within a LAN, but the client is responsible
to find them all (though facilities are provided). In Jini LookupServers
don’t cooperate, so in order to find a service proxy the client has to
ask them all. The good news is that broadcast protocols are fairly
efficient in a LAN, so a client can make just one lookup request on all
LookupServers. Unfortunately this can not be achieved in the
Internet without additional logic and cooperation among
LookupServers.

This is exactly what FADA provides. Furthermore, the FADA is a truly
distributed system, in the sense that there is no central authority or
common communication channel, and LookupServers inside the
overall virtual LookupServer operation of FADA work in a peer-to-peer
fashion. The overall topology is an hybrid centralized +
decentralized topology, where the distributed FADA architecture acts
as a centralized server from the clients’ point of view.

The FADA (as well as Jini) holds proxies for services. A proxy is a Java
class that performs communication with a real service, and that is
downloaded at run-time by clients. Clients use the public methods on
the proxies to access the services. These public methods are
specified in Java interfaces that service proxies implement. A FADA
node is a service that acts as an entry point to the distributed
database.

Service providers must implement Java classes that act as a gateway
to use their services, which may be written in Java or not. In case
they aren't, the Java class they provide to the FADA clients, the
service proxy from now on, can use whatever method to
communicate with the service. For example, the service could be
written in C, and using JNI the service proxy could access the service.
Or the service could be accessed through http, and the service proxy
could open sockets to the proper ports to communicate with the
service. Or it could be implementing some JXTA service. Writing a
service proxy in Java doesn't force any kind of implementation on the

M.Vidal, J. Sánchez, J. Aparicio 19

CORE FADA - FADA in depth

server side. Only a minimum of compatibility is requested. Within
the FETISH framework service proxies follow the interfaces defined in
the FETISH repository (a sort of UDDI-like database).

Note that these proxy objects will be executed in the client's
machine, so this fact must be taken into account when designing and
implementing service proxies.

We've seen the similarities between FADA and Jini. But, due the fact
that FADA will work over whole Internet, FADA also has some
differences from standard Jini:

• FADA nodes are designed and implemented to work together.
This means that FADA nodes are ready to contact and
collaborate with other FADA nodes by default. Although Jini
Lookup Services can be federated, FADA has this behavior
built-in, and users of FADA (both service providers and clients)
don't have to deal with it.

• The Jini sample implementation was thought for working over
broadcast capable, low-latency LANs, and uses some of the
features of such networks to achieve its job. FADA is designed
to work over the Internet. This introduces several differences:

1. Jini uses broadcast to discover the available Jini Lookup
Services; broadcast can not be achieved in the Internet: first
of all routers refuse to propagate broadcast packets, but in
case they didn't a single packet would flood the whole
Internet to reach every single connected host. In case some
of them responded with a broadcast too, this would provoke
a packet storm, disturbing other hosts not involved in the
communication. In a LAN this is not an issue. In the
Internet this approach can not be used, so discovery is not
performed (by now) by FADA nodes. They need an explicit
reference to already existing FADA nodes. This problem is
actually being worked on.

2. Jini does some of its housekeeping thinking in the low delays
of a LAN. For example, service proxy registrations are not
granted forever, but kept for an amount of time called the
lease time. Service providers get a lease object upon
registration. If they wish to keep the registration up they
must periodically renew this lease. Jini offers some ways to
automate this mechanism for the service providers. But
these mechanisms are based on the knowledge of a low
delay for communication between hosts in the LAN. This

M.Vidal, J. Sánchez, J. Aparicio 20

CORE FADA - FADA in depth

statement doesn't keep true for the Internet, where delays
of several seconds are not rare. The default Jini behavior
must be changed. FADA takes into account these high
delays, and tries to adapt to them. Failure recovery in
certain situations has also been contemplated and
achieved.

3. Jini performs communication over a reliable network, i.e. a
LAN. But FADA deals with the higher possibility of network
failure of the Internet: the more involved parties, the higher
the probability of error. It doesn't rely on reliable
connections. This leads to an approach of doing things
“maybe once”, instead of “at most once”, as it is not
possible to assure things will be done exactly once. Despite
that, FADA is not very sensitive to failures: only
performance degrades.

Another great difference between Jini and the FADA is that the former
uses RMI as the basic communication channel, while the FADA uses
HTTP. Although RMI can be tunneled through http with the help of
certain cgi script made available by SUN Microsystems, there is an
implicit overhead when transferring objects through such channel.
FADA nodes exchange potentially shorter messages to cooperate,
and thus the overhead is diminished. Also, working with http directly
allows clients to interact with the FADA through firewalls, provided
that there is some kind of http proxy or tunnel available.

M.Vidal, J. Sánchez, J. Aparicio 21

CORE FADA - FADA in depth

FADA Topology
Jini is designed to work in a network that is able to do broadcast. The
announcement protocol used by the Jini Lookup Services to announce
their presence to the whole community relies on a broadcast
primitive offered by the underlying hardware/operating system. But
in the internet there is no way we can assure a message will be
received by every single connected host. Even in the ideal case that
we could, every broadcast message would flood the whole Internet.
That's a waste of bandwidth. A different approach is needed.

Instead of that, the FADA uses the DNS infrastructure, a well known
domain name, and the ability of the FADA nodes to know their
neighborhood (in terms of FADA nodes connected with them) to
provide a way to discover new FADA nodes and their location. By
location we mean we know its IP address and the port where they are
listening for requests, so we know in which host it is really running.

Compare this with the Multicast Discovery Protocol used by Jini, in
which a Jini Lookup Service is found by issuing a request to a well-
known multicast IP address in a LAN. Every Jini Lookup Service that is
running in a host connected to the LAN would receive the request
(because all of them are listening on the same multicast address) and
therefore respond. But a LAN offers methods to perform broadcast:
in a tree or bus topology the medium is already a broadcast medium;
in a token ring topology the message can be released by every
repeater with low cost (only the ring latency, which is an already
assumed cost); in a star topology it is also easy to perform a
broadcast. In the Internet, however, this approach is not practical, as
the vast majority of network routers block multicast traffic.

Jini also offers the possibility to use a Unicast Discovery Protocol, in
which a normal (i.e. non-multicast) IP address is used to perform
communication. But the underlying protocol and mechanisms are
hidden from the programming interface. Although this gives easier
use of the protocols and mechanisms, this approach allows little or no
control at all, and therefore, if things don’t work as expected (as is
the case with Jini in the Internet) there is little that can be done to
solve the problem.

FADA builds a network of collaborating FADA nodes which use direct
http connections to other nodes. It means that a given FADA node
knows the addresses and ports of some other existing FADA nodes
(called neighbors in the first degree or just neighbors). In this way,
by using standard networking mechanisms instead of mechanisms

M.Vidal, J. Sánchez, J. Aparicio 22

CORE FADA - FADA in depth

hidden under a higher level interface, it is possible to change the
behavior to match the running scenario.

Several topologies for the FADA network have been thoroughly
considered. The first one (which had been already implemented and
tested) was a tree. This arrangement offers the advantage that there
are no cycles, so it is easy to traverse the whole tree while
performing searches. But it also has some drawbacks:

– FADA nodes can crash, thus isolating portions of the tree. A
solution could be that every node had a list of alternative
nodes to adopt as parents, so the structure would keep
connected. But this leads to another problem: the root of the
tree is a single point of failure. To avoid this, any of the root
children could be elected to be root, adopting its siblings as
children. But this tends to overload the root, and also a
contention protocol to choose one of the children as root must
be defined.

– Also, there must be a way to avoid cycles in the structure, as a
given FADA node can connect to any other node. If a node is
added to another one as a child, and then gets as a child the
parent of its parent a cycle is created. This condition could be
checked beforehand, but cycles can also exist by connecting
to its grandparent, or its grandgrandparent, etc. It would be
necessary to check the whole hierarchy before connecting,
and this would take long time (think of a huge hierarchy with
hundreds of nodes, and the links between them are running
over TCP/IP). Furthermore, the hierarchy is not static, so while
checking this condition any other node could be connecting
already checked nodes, so the cycle would also appear.

In short, too many problems arised, and they seemed very hard, if
not impossible, to overcome, so it was chosen not to force any
structure in the FADA network. But it is possible to conduct the
structure of the architecture by using the administration tools
provided with the FADA Toolkit and the HTML administration interface
contained in the FADA nodes themselves.

Any node can connect to any other node, creating transitive cycles.
Direct cycles are avoided, as there is no reason to create one
(relationships are already bidirectional). The FADA nodes topology is
not fixed or known in advance. This gives greater flexibility to the
federation: any node can, in any moment, join the architecture in any
point, and automatically it will be reached by any client in the
network that wishes so.

M.Vidal, J. Sánchez, J. Aparicio 23

CORE FADA - FADA in depth

Also, a node can leave the federation in any moment: nobody will
miss it (except, perhaps, the service providers that registered their
services there; but they are free to register them in any other place:
FADA nodes are idempotent). As a desired side effect, any given
FADA node can crash, and the rest will continue to work without ever
noticing it. Relationships between nodes take into account the
possibility of failure, and non-working references are dropped without
causing failure on the nodes. In short, administration has been kept
to a minimum.

The fact that the FADA topology is neither known nor can be forced
beforehand leads to a certain degree of performance degradation.
But it is more important to ensure flexibility and reliability than
sacrificing both for the sake of performance. Performance will
degrade anyway because of the Internet congestion state. Put in
other words: if the bottleneck is not in our hands, why keep a design
(and implementation) whose efficiency will be hidden by the
inefficiency of the network instead of a design (and implementation)
whose efficiency is not very high, but works under bad conditions?

Several algorithms for efficient propagation of lookup requests (that
are, from every point of view, broadcasts from one node to the rest)
have been considered.

The first one was flooding, which consists in sending all incoming
messages to all outgoing connections save by the one the message
came by, and storing an identifier for the request to avoid duplicates.
It is conceptually simple, but not very efficient, as every message can
arrive to a given node several times.

In [1] an efficient approach is considered. It states that, in an (n,k)-
arrangement graph a message can be broadcasted in at most O(k log
n) steps. It also guarantees that the message is received by every
node exactly once. But it relies on the properties of the arrangement
graphs, a special kind of graphs whose topology is known in advance.
We can not guarantee that. Even in the case that the FADA
rearranged it structure to become an arrangement graph, the
algorithm is based on reliable connections, as a given message is not
sent by two separate ways to arrive at the same destination. But
we've seen our connections are not reliable, and the behavior of the
FADA should not rely on that circumstance.

[2] approaches the same problem in a different way. It considers the
graph to be a star or pancake network, a special case of Cayley
graphs. These graphs are hierarchical, which forces a structure, and
this is not applicable to our case.

M.Vidal, J. Sánchez, J. Aparicio 24

CORE FADA - FADA in depth

[3] did not force any structure, but relied on an already existing
broadcasting medium. It only serves as an optimization of the
operating system broadcasting primitives.

In [4] no structure is forced in advance, and the network can be
dynamically configurable, and needn't be reliable. But unfortunately
it asks nodes to know the immediate neighborhood, assuming that
getting that information is easily obtained at a low cost, and fast. In
our case, searching that information (neighbors up to two hops away)
is much slower, and gets in the way of doing an efficient job. To
perform an efficient broadcast an inefficient information gathering
must be achieved. No gain is obtained.

Finally, in [5] we find the same objections we already considered in
[1] and [2].

Put in other words, to perform efficient message broadcasting it is
needed to avoid duplicates of these messages arriving at the same
destination. To ensure that, it is needed to know which messages will
arrive at what destination. In short, it is needed to know (at least
part of) the structure. But the high availability design of an
unhierarchical and unmaintained structure avoids any prior
knowledge.

M.Vidal, J. Sánchez, J. Aparicio 25

CORE FADA - FADA in depth

FADA behavior
This section explains the mechanisms used by the FADA

architecture. These mechanisms deal with two goals: the capability
to store and retrieve service proxies, and the ability to manage the
structure of the graph of FADA nodes.

Once a FADA node is set up it can be used to store service proxies.
Service providers will offer a service proxy for their service/s. This
proxy must be written in Java, but the service provider can use
whatever implementation for its service (either Java RMI, HTTP, JNI
and some other language, JXTA, etc.), always keeping in mind that
those proxies will be downloaded by clients and will execute from the
clients' Java Virtual Machines (JVM from now on). This means that
clients might be computationally poor machines, and the service
proxy is expected to work even under those conditions. Also, the
network connection of the client might be of low performance. This
must also be taken into account. The service proxies should be
simple and small.

If the service provider uses the FADA Toolkit class FADAHelper it is
very easy to register a service proxy. The lease housekeeping is
done by this class, so the service provider need not to fiddle with it.

In a similar way, a client doesn't have to know how FADA is
implemented and what are its methods. Instead, it can use the
FetishImpl class methods to look for a service implementation.

The flooding algorithm consists in the following:

– A node starts a broadcast: it sends the broadcast message
through all the known connections.

– A node receives a broadcast message by any connection: it
keeps the message identifier, then sends the message to all
known connections except the one the message came from.

– A node receives a broadcast message whose identifier is
already in the list of identifiers: the message is dropped
silently, because receiving an already received message
means there is a cycle in the structure. By dropping the
message we make sure we avoid infinite loops.

Service searches will be triggered by a client in a known node. This
node will do local lookup, and will also extend the search to all known
neighbors, using the flooding algorithm. To allow fast response, the

M.Vidal, J. Sánchez, J. Aparicio 26

CORE FADA - FADA in depth

lookup results from every node are NOT sent back in the same way
that lookup requests came by (called routing). Instead they are
directly reported to the interested node. Also, the local node lookup
and the lookup extension is done in parallel by the use of threads.

To avoid overloading the FADA node that started the lookup with
responses, there are some ways to limit the number of responses
sent to a node. The first one is the distance limit. A lookup request
will only be sent to nodes that are as much a predefined number of
hops away from the origin of the lookup request. This limits the
radius of the area where the lookup request is sent.

The second one is time. Once a maximum number of milliseconds
have passed since the starting of the results recovery the results
structure will be returned and destroyed. Any additional response
from a remote node will be discarded. This doesn't avoid incoming
connections, but avoids memory flooding in the origin node. A virtual
global time is used by every FADA node. FADA nodes use ntp servers
to synchronize their virtual clocks.

The third one is space. Once a maximum number of responses have
been received the results structure will be returned and destroyed.
Any additional response from a remote node will be discarded. This
doesn't stop the broadcast mechanism nor avoids incoming
connections, but avoids memory flooding in the origin node.

M.Vidal, J. Sánchez, J. Aparicio 27

CORE FADA - FADA in depth

Service Directory Architecture
Service proxies are found and resolved by the FADA. Taking into
account that only one FADA node is not enough to maintain all the
information of availability of multiples services, a graph topology
architecture of FADA nodes is proposed to search, store and recover
services in an efficient way.

 shows the FADA architecture. The structure is a graph model. This
structure can be composed of any number of FADA nodes located on
different hosts.

FADA Architecture

Any service can be registered in any FADA node of the architecture
and any client can search for a service starting the search in any
FADA node.

Next figure is a simple example, in order to explain how this structure
works. A represents HotelSearch Interface and Ai represents the
proxies of different HotelSearch Service implementations. For
example, A1 would represent the proxy of one specific service
implementation of the HotelSearch Interface. When a service
provider wants to register a new service, it interacts with any FADA.

Example: A service provider wants to register a new proxy (A2) for
the HotelSearch Interface, and discovers and joins the federation
though the FADA node 3. The FADA node 3 stores internally the A2
proxy.

M.Vidal, J. Sánchez, J. Aparicio 28

FADAFADA

FADAFADAFADAFADA
FADAFADA

FADAFADAFADAFADAFADAFADA
FADAFADA

FADAFADAFADAFADA

FADAFADA

CORE FADA - FADA in depth

Architecture Example

When a client wants to search for an implementation of one interface,
interacts with any FADA. The FADA will carry out all the procedures in
order to return to the client the requested service. First of all, you
must notice that the FADA may return more than one implementation
(proxies) to the client. The provided result is a FadaServiceMatches
object, that includes pointers to the service proxies. The FADA will
check if it contains the requested proxy. If it contains a proxy it will
be part of the result.

After that, the FADA will expand the search process to all direct
neighbors, which in turn will check if they contain the requested
proxy, and will also expand the search process to all neighbors but
the one the search request came from (nor the original FADA). This
prevents direct search cycles.

Every FADA that receives a search request take note of the search
identifier, FadaSearchID, and will reject all search requests with the
same FadaSearchID. This prevents transitive or indirect search
cycles.

Example: A service provider wants to search implementations of a
service (A) for the HotelSearch Interface, starting from FADA 1. The

M.Vidal, J. Sánchez, J. Aparicio 29

FADA 2

Service A
Proxy A1

FADA 3

Service A

Proxy A2

FADA 1

FADA 0

Service A
Proxy A3

CORE FADA - FADA in depth

FADA 1 checks if it contains some proxy. The FADA 1 does not
contain any proxy to match with the requested service. FADA 1
propagates the search through its neighbor FADA 1.1. FADA 1.1
repeat the same process. At the end, A1, A2 and A3 are found by the
system and is returned to the Client. All search matches are returned
directly from the node that found the reference to the node that
started the lookup process. This allows a fast response.

The search process will end when the requested number of responses
is reached (neighbors have no way to know this, but the node that
started the search will reject any responses past this number) or the
specified number of milliseconds from the start of the search is
reached.

The number of the FADA nodes can be increased according to the
needs of the registered services. This architecture maintains the
main properties of the Jini architecture. Having more than one FADA
node avoids an overload of services in any node.

M.Vidal, J. Sánchez, J. Aparicio 30

CORE FADA - FADA in depth

Graphical overview
The next graphic shows the FADA architecture as well as the
information that must be stored in each FADA to maintain a graph
structure.

Detailed Architecture Example

M.Vidal, J. Sánchez, J. Aparicio 31

FADA 0

{Services}

{Neighbors:
FADA1, FADA2}

FADA 6

 {Services}

{Neighbors:FADA2,
FADA4, FADA5}

FADA 4

{Services: A2(X)}

{Neighbors: FADA1,
FADA5, FADA6}

FADA 1

{Services: A1(X)}

{Neighbors: FADA0,
FADA4, FADA5}

FADA 3

{Services}

{Neighbors:
FADA2}

FADA 2

{Services}

{Neighbors: FADA0,
FADA3, FADA6}

FADA 5

{Services: C(Y)}

{Neighbors: FADA1,
FADA4, FADA6}

CORE FADA - FADA in depth

Diagram description

 FADA 1 : Identifier for the FADA node.

 {Services: A1(X)}: Indicate that there is the A1 service (that
implements interface X) registered in the FADA node where
appears this indication.

 {Neighbors: FADA0, FADA4, FADA5}: Indicate that this node
knows the location and can therefore contact and cooperate
with the FADA nodes identified by the identifiers FADA0,
FADA4 and FADA5.

Searching service example

When a FETISH client wants to search for an implementation of one
interface, interacts with any FADA. The FADA will carry out all the
procedures in order to return to the client the requested service
proxy. Firstly, you must notice that the FADA may return more than
one implementation (proxies) to the client. The provided result is a
set of proxies. The FADA will propagate the search towards the
neighbor FADA nodes.

Example: A FETISH provider wants to search implementations of an X
Interface, starting from FADA1. He will call the method lookup in the
FADA1. This method will create a new unique SearchID (96 bits long),
start the lookup within itself and, in parallel, will extend the search to
neighbors FADA0, FADA4 and FADA5. FADA1 will find a service A1
that implements interface X, and will add the result to the result set,
identifying the result with the search ID. At the same time, FADA0
will do the internal lookup and the extension to FADA2 in parallel. It
won't find any reference to a proxy implementing X, so it will give up,
telling FADA1 about 0 results found. Meanwhile, FADA4 has started
the local lookup and extended the search to nodes FADA6 and
FADA5. The latter will be rejected by FADA5, as it has already
received a lookup request with the same SearchID by FADA1
(transitive cycles avoidance). FADA6 will do the parallelized lookup
within itself and extension in FADA2, which will also reject the lookup
request, as it will have received a request with the same SearchID via
FADA0. At the end all nodes have been searched, and all responses
(A1 from FADA1 itself, A2 from FADA4) are sent directly to FADA1,
which, after reaching the requested number of responses or having

M.Vidal, J. Sánchez, J. Aparicio 32

CORE FADA - FADA in depth

timed out, will return the results to the FETISH provider that started
the search process.

Had the FETISH provider specified an nHops parameter of 1, no
search would have been extended beyond FADA5, FADA4 and FADA0,
as the parameter nHops is decreased in every lookup extension. So
service A2 would have never been found. But that might be right, as
the potential number of responses could bring down the FADA1 if
there were no time, distance and/or space constraints.

M.Vidal, J. Sánchez, J. Aparicio 33

CORE FADA -

M.Vidal, J. Sánchez, J. Aparicio 34

CORE FADA - FADA communications layer

FADA communications layer

FADA has evolved from being an extension of the Jini reference
implementation, trying to overcome its inherent limitations, to its
actual state, a complete rewrite of the software from scratch
dedicated to deal directly with the roles it has to accomplish. Such
evolution can be observed from the various methods used for
communication among FADA nodes and between the FADA and FADA
clients.

Communication among FADA nodes and between the FADA and FADA
clients started by using the standard Java Remote Method Invocation
framework (Java RMI). This method offers several advantages:

– The use of an already established standard, with its complete
set of tools and classes.

– The easy integration with the mechanisms used by the Jini
reference implementation.

Unfortunately, some drawbacks promptly appeared. The most
notable of them are:

– The use of a wire protocol that can not be used as is in
environments that involve the crossing of a firewall.

– The need to install an additional wrapper to cope with such
environments.

– The lack of control on the wire protocol itself. This lack of
control precludes the use of different communication
mechanisms to ensure privacy, for example.

The first shift from the RMI environment was the use of XML-RPC calls
through HTTP. XML-RPC settled the foundations for the now widely
used SOAP mechanism. SOAP stands for Simple Object Access
Protocol. It is heavily based on XML.

The goal of the FADA protocol is to be an alternative to the default
RMI protocol, not to be the most interoperable protocol.
Interoperability is not a concern within the FADA, because the FADA
nodes have no need to be interoperable with other services. The
FADA proxy itself (and service proxies in general) provides the
needed interoperability layer, so there’s no need to lower the

M.Vidal, J. Sánchez, J. Aparicio 35

CORE FADA - FADA communications layer

interoperability level down to the wire protocol. Moreover, SOAP
incurs in an overhead two to three orders of magnitude above the
straight RMI protocol.

Therefore it was chosen not to adopt SOAP, but rather its earlier
version XML-RPC. This Remote Procedure Call protocol doesn’t need
DTD’s or XML Schemes to validate, and it’s quite simple and
straightforward to implement. Its use of ASCII XML documents make
it easy to transfer data in HTTP messages, and the use of HTTP is a
Good Thing from the end user perspective, who will have to deal with
firewalled environments that provide an HTTP proxy to access the
Internet.

XML-RPC, though, is not readily usable for the FADA purposes, so all
the classes involved in FADA communications had to be represented
with the XML-RPC data primitives and constructors. This lead to the
appearance of a whole package of Java classes to transform Java and
FADA classes to/from XML-RPC data types. Furthermore, an XML
parser had to be chosen. It was decided to adopt the TinyXML
parser, which is small and yet powerful enough to provide the
required functionality.

M.Vidal, J. Sánchez, J. Aparicio 36

Parameter 1

...

Exception

<false>

Return Type
(can be an
Exception)

<true>

B CA

Method Identifier

Parameter N

A- Data sent for a method call

B- Data received from a successful
method call

C- Data received from a method call
that results in an exception.

Notice how the boolean allows to
distinguish between a failed method
call and a successful method
call that returns an Exception.

CORE FADA - FADA communications layer

After a period of successful operation it was decided to give yet
another turn to the screw, and drop usage of XML at all. Although
small, the use of XML RPC still imposes an overhead on all FADA
communications, and the use of the wrapper classes to transform
between FADA types to XML-RPC types makes it difficult to add new
classes needed in communication. A binary mechanism was the ideal
form, and that is the last step in the development of the FADA
communication layer.

M.Vidal, J. Sánchez, J. Aparicio 37

CORE FADA - FADA communications layer

RMI and the new FADA communications layer

RMI is the Java Remote Method Invocation. It is a framework that
allows Java classes to call methods on Java classes that do not reside
in the same memory space. This is suitable for intercommunication
between classes that reside on different Java Virtual Machines in the
same host or in geographically separated Java Virtual Machines.

RMI uses a pair of classes, named Skeleton and Stub, to perform
communication between a server and a client in a more or less
transparent way. In Java 1.2 the skeleton part was dropped, and its
functionality embedded in standard Java Remote Objects. The
skeleton/stub pair is an inheritance of the homonymous entities used
in RPCs, the Remote Procedure Call framework also invented by Sun.

RMI remote objects implement an interface that extends the standard
Java interface Remote, from the package java.rmi. Classes that wish
to be used as remote objects from within Java, using RMI, have to
implement an interface that extends java.rmi.Remote. Such objects
can be passed onto a command line tool called rmic, the rmi
compiler. This rmi compiler generates the pair of stub/skeleton
classes. For each different method call provided by the remote
interface (the interface that extends java.rmi.Remote) an id is
generated.

M.Vidal, J. Sánchez, J. Aparicio 38

1- The client calls the interface method on the remote object (really the stub)
2- The stub serializes parameters and creates the data stream,
that is sent to the skeleton by the means of the transport layer.
3- The skeleton reads the data stream and, depending on the method id,
deserializes the parameters.
4- Once deserialized, the skeleton calls the server method with the proper
parameters. Method overloading is provided by the means of different method ids.
5- The server performs the method execution.
Return types or exceptions are returned back to the skeleton.
6- The skeleton returns the results back to the stub.
7- The stub deserializes the data stream and returns the results to the client.
If communications errors arise the stub wraps them in a generic
RemoteException that is catched (or thrown) by the client method.

SkeletonClient ServerStub

CORE FADA - FADA communications layer

The stub implements all remote methods in the remote interface.
This stub serializes the parameters for the call and sends them,
together with the method identifier, to the network endpoint where
the skeleton is listening.

The skeleton, in turn, sits waiting for requests. Whenever a new
request is received the skeleton deserializes from the stream the
identifier for the method, and then deserializes the method
invocation parameters, according to the method called. When all
data has been obtained, the homonymous method in the server
object (which is now local to the skeleton Java Virtual Machine) is
called. Upon termination of the method call, the skeleton receives
the return type (or Exception, if such is the result) and serializes them
back to the stream where the stub is waiting for the return. The stub
then deserializes the return type (or the Exception) and gives it back
to the caller. The caller has performed a remote call almost
transparently.

However, the communication details of this approach are hidden
from the programmer’s perspective, which eases the implementation
of classes that use RMI, but leaves little room for optimization or
other kinds of manipulation. Therefore, if the standard underlying
mechanisms are not suitable for a particular application, there’s not
much that RMI can do for the programmer. The programmer must
invent its own method of remote invocation that is suitable for her
scenario.

The same mechanisms used in Java RMI have been applied to the
latest FADA communications layer, though through a different set of
classes. The greatest benefit of the FADA approach is that the
transport layer, that moves the data between the skeleton and the
stub is now exposed. That means that the developer can plug its
own transport mechanism. This user-definable transport mechanism
can use whatever means for compression, encryption or otherwise
obfuscation of the transmitted data, at the transport level. What’s
more, the server part (the skeleton) can now multiplex several
communications in the same socket, because the decision on what
skeleton to call can be made by the transport layer. Or maybe the
skeleton and stub pairs may choose not to use sockets at all, if the
developer likes it so. No transport means are enforced, although a
default HTTP/binary-stream data flow can be used in lack of any
other. By using HTTP the caller may be behind a firewall and
transparently use an available HTTP proxy, without any additional
modification of the software.

M.Vidal, J. Sánchez, J. Aparicio 39

CORE FADA - FADA communications layer

The identifiers for the interface and method ids have been generated
by using the Tiger hash function, proposed by Ross Anderson and Eli
Biham in 1996. More information on the Tiger hash function can be
found in

http://www.cs.technion.ac.il/~biham/Reports/Tiger/tige
r/tiger.html

M.Vidal, J. Sánchez, J. Aparicio 40

CORE FADA - FADA mechanisms

FADA mechanisms

Here we will depict the basic FADA mechanisms to make a cloud of
FADA nodes become a single virtual Lookup Server.

Discovery mechanism
Discovery is the only part of FADA that FADA doesn’t do itself. After
all, it’s pretty difficult to obtain functionality from something if an
initial interaction is not performed in advanced.

FADA doesn’t force the user to use a discovery mechanism. If the
user knows the URL of a FADA node it can be used to join the
federation in that point, and by using the FADA methods regarding
the directory structure it is possible to obtain the location of the rest
of FADA nodes. However, FADA provides with a way to perform
discovery of FADA nodes if no URL is known in advance. The
mechanism is based on the Domain Name Service, the DNS.

A DNS server performs the mapping between domain names and IP
addresses. The DNS service follows a hierarchical structure where
there is (at least) a root DNS server, and that DNS server knows the
IP addresses of the DNS primary domain servers. A DNS primary
domain is the trailing part of the dot separated domain names. For
example, in the URL fada.fetishproject.com, the primary domain is .
com.

Each one of the primary domain servers know the IP addresses of
several secondary domain servers. In the example above, the
secondary domain is fetishproject. Each one of the secondary
domain servers know the IP addresses of tertiary domain servers (if
such tertiary domain exists), and so on until the domain part of the
URL is exhausted and all that is left if the host part, which is a single
host name (fada in the example above).

The DNS server for the last domain obtained (fetishproject in the
example) knows the IP address of the host itself. When a user polls
the DNS service for a URL such as fada.fetishproject.com the DNS
servers involved are: the root DNS server, the .com domain DNS
server and the fetishproject domain DNS server. The DNS server for
the domain fetishproject returns the IP address of the host fada.

This, in itself, is short of amazing. What is interesting is that every
DNS server mentioned in the above paragraph can be replicated.
That is, there may be two DNS servers for the domain fetishproject,
for example. This replication is transparent for the end user, and
allows the DNS to be a high availability service.

M.Vidal, J. Sánchez, J. Aparicio 41

CORE FADA - FADA mechanisms

What’s more, a DNS server can be configured to give different
responses in successive calls. That is, the DNS server for the domain
fetishproject can respond a query for the host “fada” with different IP
addresses every time it is polled. In this way, several hosts can be
given different IP addresses, and all of them can be registered in the
fetishproject DNS server (or servers, as this server can be replicated)
under the same name.

M.Vidal, J. Sánchez, J. Aparicio 42

Root DNS server

.net DNS server
IP address A

fadanet
DNS server
IP address B

DNS client

Host fada
IP address C

Resolver

2- Resolver queries
root DNS for .net

3- Root replies
with IP A

4- Resolver queries
.net DNS for fadanet

5- .net DNS replies
with IP B

6- Resolver queries fadanet
 DNS server for host fada

7- fadanet DNS server
replies with IP address C

1- Client uses OS
resolver to query for

fada.fadanet.org

8- Resolver returns
IP C to client

9- Client interacts
with the desired host

Client host

CORE FADA - FADA mechanisms

This allows the FADA to have several FADA nodes whose IP addresses
are registered in the DNS server for the domain fetishproject. If a
user requests the IP address of the host fada.fetishproject.com the
DNS service can respond with an IP address to one request, and with
a different IP address the next time, and so on, until the total number
of hosts have been visited, and the IP addresses obtained start
repeating.

If the lease mechanism is applied to the DNS service it is possible for
FADA nodes to register in the DNS service and to keep a lease on it to
maintain the DNS mapping from the name fada.fetishproject.com to
their IP addresses. The moment a FADA node crashes the lease will
expire, and the DNS service will silently drop it from its mapping
table.

This, together with the replication capabilities of the DNS service
makes the FADA a highly available, management free service.

Registration mechanism
The registration mechanism is the way by which a service proxy is
sent from the service provider to a FADA node, and this FADA node
keeps a copy of it, with the information needed to find it later, and to
successfully return it to the requester. The service provider acts as
the client of the FADA architecture, and the FADA acts as the server
side from the service provider’s point of view.

Client (Service Provider) side

The client side must construct an instance of the class
FadaServiceItem. This class contains the service proxy to register,
the array of entries and the desired FadaServiceID. If no
FadaServiceID is desired this field may be left empty by specifying
null. If no entries are desired to be specified this parameter may also
be replaced with null. Upon construction the class FadaServiceItem
will introspect the service proxy and gather the complete list of
implemented interfaces, either directly or through interface
implementation and/or inheritance from class extension. This list of
interfaces (as an array of java.lang.String) can be checked through
the available methods.

An entry point to the FADA must be obtained. Creating a FadaProxy
with no arguments defaults to the url fada.fetishproject.com:2002. It
is recommended to obtain the list of neighbors of this node and
perform this operation recursively a random number of times to
obtain the url of a random FADA node in the architecture, so as to
avoid overloading the FADA node at fada.fetishproject.com:2002 with
service proxies. In the future the number and size of registered

M.Vidal, J. Sánchez, J. Aparicio 43

CORE FADA - FADA mechanisms

proxies in a FADA node may be limited, but only after study of the
service proxy population. Before this happens the FADA must be
widely used.

The caller issues the method invocation request on the FADA node
associated to the FADA proxy. The request will be processed by the
FADA node (see below) and a response to the HTTP POST request will
be obtained, containing an response with the resulting
FadaServiceRegistration, which contains the FadaServiceID obtained
(that can be the one specified, if accepted, or a completely new one,
if none specified).

The FadaServiceRegistration also contains the FadaLeaseProxy (that
has been constructed locally, it hasn’t been serialized from the server
side) that will allow the client side to renew the lease and so ensure
the service proxy is not deleted from the FADA after some time.

Server (FADA) side

When the FADA receives an HTTP request on the port it’s listening to
it spawns a new instance of the local HttpProcessor implementation.
This HttpProcessor reads the entire HTTP message (using the classes
provided in the package net.fada.http, such as HttpHeader and
HttpMessage), and checks if it’s a POST request, a GET request or any
other kind or request. In the latter case an error is issued in return
(unsupported request). If it’s a GET it refers to the web interface to
the FADA node, and it’s executed by the method processGET(). If it’s
a POST it’s executed by the method processPOST(). In the case of
registration the method does the following:

– It creates a FadaServiceMatch instance, to speed up the lookup
procedure, and also to separate the service proxy from the
FadaServiceMatch. In this way the two-step lookup mechanism is
easier to perform. The list of interfaces is dumped onto a TreeMap,
so lookup complexity will only be logarithmic when matching the
interfaces. The same is done for the list of entries.

– It computes the expiration time by adding the actual time
(System.currentTimeMillis()) and the accepted lease time (which is
the specified lease time chopped to a maximum value specified in
the FadaLease interface). Then it adds the FadaServiceItem to a
MinHeap. The lease expiration mechanism then takes place.

M.Vidal, J. Sánchez, J. Aparicio 44

CORE FADA - FADA mechanisms

The UML sequence diagram that describes the registration
mechanism is the following:

M.Vidal, J. Sánchez, J. Aparicio 45

CORE FADA - FADA mechanisms

Lease expiration mechanism

Client side

The client side is not related at all with the lease expiration
mechanism. This process is completely inner to the FADA node.

Server

The FADA node has an instance of Thread dedicated to the task of
watching the expiration times of the registered service proxies, and
the deletion of these proxies when their leases expire.

This Thread will fetch the expiration time of the root of the heap,
which is the least value of the whole heap (this condition is assured
by the properties of the min-heap), and check how much time is
available until the lease expires. When this time has been computed
it calls the wait() method for the amount of time calculated on an
Object instance that serves as a lock for all concurrent threads within
this task. When this this time has passed and the Thread instance
awakes again it deletes the root of the heap, fetches the expiration
time of the new root and repeats the process. The deletion of the
root takes a time proportional to the logarithm in base 2 of the total
number of elements in the heap, and therefore is very efficient.
Heaps are often used to implement priority queues, and the list of
expirable items in the FADA node is a priority queue.

Lease renewal mechanism
The lease renewal mechanism responsibility lies on the client side,
but it affects directly the server side, so both parties are described
here.

Client side

The client side (service provider) of the lease renewal mechanism is
responsible for renewing the lease before it expires. Network delays
must be kept in mind when performing this task, because the lease
renewal request may be late to the destination even if it was issued
before the lease expired.

The FadaLease offers methods to known the expiration time (which is
calculated as the time the registration response or the lease renewal
request response was received at the client side plus the granted
lease time). By taking the actual time before and after the
registration or lease renewal attempt and substracting them an
estimation of the real network delay value can be computed. This

M.Vidal, J. Sánchez, J. Aparicio 46

CORE FADA - FADA mechanisms

value is very unstable, so a filtering mechanism must be performed
to gain reliability.

The FadaLeaseProxy may contain one or more instances of an
implementation of the discrete linear Kalman filter to obtain a more
reliable value for the network delay. This set of discrete linear
Kalman Filters is embedded in a class called LeaseDelayFilter.
Thanks to the properties of the Kalman Filter it is possible to make a
very reliable (though not fail-proof) estimation of the next network
delay value. This is possible because, although network delay may
dramatically vary in a short period of time, usually the network has a
sustained average value (subject to changes, of course). This
estimation takes into account the calculate variance of the measured
network delay.

In practice it is enough to substract this estimation of the delay to the
expiration time of the lease to know at what time the lease renewal
request must be issued. The class FadaLeaseRenewer does exactly
this, only that it keeps a pool of LeaseDelayFilter instances (stored in
an instance of FilterBattery), and each of them can be shared among
several FadaLease instances if they belong to the same FADA node
(because the network delay will follow the same distribution). The
class FadaHelper needs an instance of FadaLeaseRenewer to be
instantiated, and so this mechanism is also applied when the
registration and lease renewal issues are left to the FADA helper
classes.

The estimation of the network delay is performed through the use of
a set of mathematical tools known by the name of Kalman filter. In
1960, Rudolf E. Kalman published a paper describing a recursive
solution to the discrete-data linear filtering problem.

The Kalman filter is a set of mathematical equations that provides an
efficient computational (recursive) solution of the least-squares
method. The filter is very powerful in several aspects: it supports
estimations of past, present, and even future states, and it can do so
even when the precise nature of the modeled system is unknown.

This approach is what we needed: a mathematical model that was
able to predict the future state of the network. Not only the Kalman
filter gives the best estimation for the next value, but it also gives the
error variance, which is much more useful in our case, as we do not
need the exact predicted value, but an upper bound for that
prediction. In other words: we don't need to know what the most
probable next delay time will be, but what is the confidence interval
for that value, and use the worst value as our estimation.

M.Vidal, J. Sánchez, J. Aparicio 47

CORE FADA - FADA mechanisms

The Kalman filter as-is, though, did not fit our case, as it makes some
assumptions that didn't hold true. It assumes the real value is
disturbed by a white noise signal. In our case the delay evolution of
the network is not a continuous function, but we can model it as an
average continous function disturbed by another function. This other
function doesn't follow a gaussian distribution. Further investigation
led us to a different approach to the use of the Kalman filter.

The model used in the FADA is the following:

– The delay is assumed to be a unknown constant. All known
network delay models take in account the network topology, the
enqueueing schemmes, the timeout counters, etc., but in the
Internet it is not possible to have a global knowledge. Therefore,
for lack of a better model, the estimation of an average unknown
value will be the best possible effort.

– The instant delay (that is, the delay measured in a concrete instant
of time) is assumed to be distributed around this mean value,
following a Gaussian distribution.

The equations used are the general Kalman equations particularized
for a one-variable case with a constant evolution over time of the
parameter to be estimated, that is, the average delay in the first
case, the average positive increment in the second case. The
equations for both filters are the following:

– Initial values:

public DiscreteKalmanFilter(
double A,
double B,
double Q,
double R,
double H,
double initialX

) {
this.A = A;
this.B = B;
this.Q = Q;
this.R = R;
this.H = H;
this.xHatAPriori = initialX;
this.xHat = 0;
this.pAPriori = 0;
this.K = 0;
this.P = this.Q;

}

The parameter A is the relation between two samples of the estimated variable. As it is
estimated to be a constant, A is 1.

M.Vidal, J. Sánchez, J. Aparicio 48

CORE FADA - FADA mechanisms

The parameter B is the weight of the control input. As in our model there is no control
input, it is assumed to be zero.
The parameter Q is the standard deviation of the process noise. It has been estimated
(through experiments) to be 0.00001.
The parameter R is the standard deviation of the measurement noise. It has been
estimated to be 0.01. In our model all the variation is assumed to come from the
measurement.
The parameter H is the relation between the state and the measurement. As in our
model the state IS the measurement, H is 1.
The parameter P is the error covariance. It is started with a value equal to Q.

public synchronized void start(double initialX) {
this.xHatAPriori = initialX;

}

The second method allows us to reset the filter without the need to
create a new instance.

– Update (projection) equations:

public synchronized void update(double u) {
this.xHatAPriori = this.A * this.xHat + this.B * u;
this.pAPriori = this.P + this.Q;

}

– Measurement (correction) equations:

public synchronized void measurement(double z) {
this.K = this.pAPriori / (this.pAPriori + this.R);
this.xHat = this.xHatAPriori + this.K *

(z - this.H * this.xHatAPriori);
this.P = (1 - this.K * this.H) * this.pAPriori;

}

– Estimation

Instead of having one filter, we now use two. The first one estimates
the average (mean) value of the network delay. Although the
network delay is not a constant, its average value can be assumed to
be constant, and the fluctuations around this central value may be
assumed to be due to the variance. To get a more accurate model,
this variance around the central average value must also be
estimated. But we are not interested in getting an accurate model of
the network delay. What we really need is a pessimistic estimation
that tells us how worse can things go, and therefore we use another
Kalman filter to estimate the average positive increase in network
delay. Although not an exact model of the distribution or worst value

M.Vidal, J. Sánchez, J. Aparicio 49

CORE FADA - FADA mechanisms

of the network delay, this approach did much better fit it. Simulation
and experiments have shown a much better response than simple
averaging: the failure rate of the modified Kalman filter was much
lower. We call a failure a lease that couldn't be renewed in time.

The figure shows the behavior of the filter we're using when facing
Internet delays. We implemented a simple server that received a
request of a client, waited a random time (whose distribution was
uniform around ±30% of a constant time, that was modifiable at run-
time) and then issued the response. The spikes correspond to the
Internet delays. The filter adapts quickly to new conditions on the
network, although not so quickly that it would follow the previously
sampled value, which would render the filter useless.

Even with the Kalman filter we still needed to ensure that service
proxy registrations where not deleted from the registry when the
service was still alive. A reregistration method was added to the
class FADA helper classes, that could be used by the class that
automatically keeps alive the FADA leases. Reregistration method
registers the service proxy again, but it keeps the same parameters:
attributes (given by the service provider), the interfaces implemented

M.Vidal, J. Sánchez, J. Aparicio 50

0

500

1000

1500

2000

2500

3000

3500

4000

4500

Real

Best Estimate

Upper Bound

Time

D
el

ay
 (

m
s)

CORE FADA - FADA mechanisms

(given by the proxy itself) and ServiceID (given by Jini and FADA, but
kept the same by FetishImpl and FetishLeaseRenewalManager). Even
when a lease is not renewed in time, the state of the FADA remains
stable, and users will only notice a delay in the response or a miss in
the lookup, that will be fixed on the next lookup.

The FADA helper classes detect a FADA node failure by its lack of
response in front a a lease renewal request. In that moment, the
FADA helper classes residing in the server part of the revise locate
another FADA node (mainly from a list of candidate FADA nodes
obtained during the last successful lease renewal request) and
register the service in one of them. In this way the registration is
persistent even in case of FADA nodes failure. As all FADA nodes are
idempotent (ie. non-privileged in any way) none of the service
parameters are affected in any way. The state of the FADA network
is stable in the long run.

Server side

On the server side (the FADA node), when a lease renewal request is
received the lease is searched in a TreeMap that is put side by side
with the min-heap. This TreeMap is sorted by FadaLeaseID, and
contains a reference to the heap node that holds the FadaLease.
With that data it is easy to remove the selected item, recompute its
expiration time and reinsert the item in the heap. The Thread
instance that makes the leases expire is notified of the changes via a
call to notify() on the object that serves as a lock for all concurrent
threads within this task. The Thread instance then awakes from the
call to wait(), and initiates a new iteration to search the next lease
that will expire. It is likely that the structure of the heap may have
changed, because that’s the purpose of the lease renewal
mechanism.

M.Vidal, J. Sánchez, J. Aparicio 51

CORE FADA - FADA mechanisms

The UML sequence diagram that describes the lease renewal
mechanism is the following:

M.Vidal, J. Sánchez, J. Aparicio 52

CORE FADA - FADA mechanisms

Lease cancellation mechanism
The lease cancellation mechanism is, obviously, initiated by the client
side, and performed by the server side (the FADA node).

Client side

The client side, having the FadaLeaseProxy, makes a call to the
method cancel(). This method sends a remote method call to the
FADA node where the FadaLease is sending as a parameter the
FadaLeaseID of the lease to cancel. The result of this operation, if no
transmission error occurs, is always a boolean with the value true.

Server side

The FADA receives the HTTP POST request that contains, as usual the
method call. The HttpProcessor.processPOST method is invoked, and
the FadaServiceRegistrar is notified of the intention to cancel a lease.
The lock is acquired to avoid the Thread instance that expires leases
to touch the structure before the lease has been cancelled. Then the
FadaLeaseID is searched in the TreeMap structure (logarithmic cost),
and a reference to the heap node obtained. This heap node is
eliminated from the structure, and its place filled with the last
element of the heap, which is sorted up and down again to ensure
the structure is still a min-heap. That’s all. Further attempts to
renew the expired/cancelled lease will result in an exception.

Lookup mechanism
The lookup mechanism involves one client side, the service proxy
client, and many (potentially all) of the FADA nodes available in the
FADA architecture.

Client side

The client side (the end-user of the service proxy, be it a human user
or another program, such as a combined service proxy) constructs a
FadaServiceTemplate object with the FadaServiceID, the set of
entries and/or the set of interfaces the service proxy must
implement, as specified in chapter 6. This template will be passed as
a parameter in the call performed on the server side (the FADA
node).

Server side

FADA nodes, when receiving lookup requests, will start a process to
try and find matching results for the query on as many nodes as
possible, sticking to the limitations specified by the received query. A

M.Vidal, J. Sánchez, J. Aparicio 53

CORE FADA - FADA mechanisms

flooding algorithm is used to broadcast the query throughout
(potentially) the whole FADA architecture.

To specify this process, FADA nodes can be divided in three
categories, depending on the roles they are playing in this flooding
procedure.

We will call initiator the FADA node that received the query from the
client side, and will initiate the flooding algorithm to broadcast the
query.

Every node that receives a lookup query and propagates it to other
nodes we will call a propagator.

Last, we will call leaves those nodes that detect the conditions to stop
the broadcast are met, and so stop propagating the query.

Those roles are not assigned at configuration time, but rather taken
by each FADA node at runtime, depending on its connectivity state
and the state of the lookup being taken.

Initiator

The initiator FADA node receives the lookup request from the
client, generates a new globally unique identifier for this search,
creates a structure to store the lookup results (identified by the
freshly created globally unique identifier) and propagates the
query to all known nodes, telling them also the identity (FadaID,
that contains the url) of itself (the initiator) and also the FadaID of

M.Vidal, J. Sánchez, J. Aparicio 54

FADA

Client

Service
Proxy

1- Lookup

2- Result

CORE FADA - FADA mechanisms

the node they must NOT propagate the query to (in this case, the
initiator FadaID also).

Propagators

Propagators are FADA nodes that receive a lookup request from
another FADA node. They receive the identifier of the lookup
request created by the initiator, and they check if they have
already received it. If it is so the received request is silently
dropped. In this way transitive loops in the broadcast mechanism
are avoided.

Propagators also receive the FadaID (which contains the url) of the
initiator, to know where the potential lookup results must be sent
to, and the FadaID of the FADA node they must NOT forward the
lookup request. This last FadaID belongs to the FADA node that
sent the lookup request to this propagator, and we will call the
sender.

Then the propagator sends the lookup request to all neighbors
except the initiator and the sender, because both of them already
have received the lookup request, and have already forwarded it
to other propagators. In this way direct loops in the broadcast
mechanism are avoided.

M.Vidal, J. Sánchez, J. Aparicio 55

CORE FADA - FADA mechanisms

Leaves

When a FADA node detects that the number of hops has been
decreased down to zero, they don’t propagate the query anymore.
When a FADA node detects that the time the query should have
been completed has passed, they also stop forwarding the query.
FADA nodes can do the latter because they periodically poll the
official time from a time server. They don’t change the time of the

M.Vidal, J. Sánchez, J. Aparicio 56

Leaf

Propagator

Initiator

Client

Leaf

1- The client peforms a
lookup request on a

discovered FADA node

2- The initiator creates a
new globally unique

search id and performs
local lookup

3- The initiator
sends the lookup
parameters and
the search id to

its known
neighbors

4- The propagator stores the
search id, sends lookup
parameters to known

neighbors except the one the
request came by, and
performs local lookup.

5- Leaves think they are propagators, and send
the request parameters and the search id to

known neighbors. As they check the search id
and see they already have received it they refuse
to propagate this particular search. As they know

no more neighbors they stop propagating, and
become leaves. Nonetheless, they perform the

local lookup because they also received the
lookup request sent by the propagator above.

6- All nodes that found matching
results send them directly to the
initiator. If those nodes weren’t
neighbors of the initiator they
attempt to connect to them.

7- The matching results are sent
back by the initiator to the client

that requested them after the
timeout has happened.

CORE FADA - FADA mechanisms

local host, but rather compute the difference between the local
host time and the official time, and use that difference to get a
hint of the official time. In this way they can know when a lookup
request was meant to be dropped.

The third lookup extension constraint is the number of responses.
The responsibility is left to the initiator, which, when the number of
requested responses is reached, or any of the above two
conditions are met, sends a response to the caller (the client side),
with all the achieved lookup results. Propagators and leaves are,
in the actual implementation of the FADA, unable to know if the
requested number of responses has been reached or not.

Propagators keep the received search identifiers for several hours,
to ensure that a query hasn’t been traveling around the Internet
and eventually arrive to a FADA node that has already received
the query (there is no way a propagator can know if a neighbor of
his has ever received the query).

No matter what role a FADA node involved in a lookup request is,
they all perform (in parallel with the possible extension mechanism) a
local lookup to match the received template against the registered
service proxies. When they have completed it they send it to the
initiator (the initiator uses local method calls, the propagators and
leaves send it usual HTTP messages containing serialized data). The
initiator uses the java.lang.Object monitor, the statement
synchronized and the methods wait() and notify() to resolve the
contention problem for concurrent access to the structure that will
finally hold the obtained lookup results. Note that there will never be
replicates in the results, because every node reports only local
matches.

All FADA nodes that report lookup results to an initiator will also
attempt the creation of a connection between the reporter and the
initiator. What it means, they will become neighbors (if they weren’t
already). In this way high-connectivity is achieved, and the
probability of failures in case of isolated nodes will decrease as long
as these FADA nodes are used and have service proxies registered
and lookup results to report.

M.Vidal, J. Sánchez, J. Aparicio 57

CORE FADA - FADA mechanisms

The UML sequence diagram that describes the lookup mechanism is
the following:

Note that it also depicts the retrieval of proxies, explained in the next
section.

M.Vidal, J. Sánchez, J. Aparicio 58

CORE FADA - FADA mechanisms

Retrieval of proxies
Lookup results contain only pointers to the real service proxies, and
not the proxies themselves. In this way bandwidth is saved, and the
response times are much shorter, because typically the vast majority
of a set of lookup results will be discarded, and only one
implementation will be used. This is not much of an issue for the Jini
sample implementation, that is designed to work in a LAN
environment, where the bandwidth is typically higher than when
dealing with the Internet, and also the network delays are several
orders of magnitude shorter. In the Internet, though, downloading
two megabytes of data to use a service proxy and a class that both
occupy fifteen kilobytes won’t make the users happy.

The retrieval of proxies can be divided in two phases. The first one is
discovery, and has been described in the lookup mechanism. The
second phase is retrieval itself, and is described here.

Client side

The client side has already obtained a FadaServiceMatch instance
which has a method getService(). It will return a FadaServiceItem.
This FadaServiceItem has as an attribute the service proxy
requested. Calling the method getProxy will return a
net.fada.directory.SignedMarshalledObject instance. This
net.fada.directory.SignedMarshalledObject instance already contains
the serialized data of the service proxy. Calling the get() method on
this net.fada.directory.SignedMarshalledObject will start the
downloading procedure, in which the class of the object whose
serialized data is contained in the
net.fada.directory.SignedMarshalledObject will be downloaded from
the location specified by the service provider at registration time
through the use of the java.rmi.server.codebase property.

If the client uses the FadaHelper class all this process will be
executed by this class, and the client side will cleanly obtain an
Object instance.

No matter what method is used, the Object instance must be
assigned and cast onto a variable of type the interface that was
searched. In this way the methods provided by the interface (and
implemented by the class downloaded) can be called from the client,
and the service proxy (and ultimately the back-end service) will be
used.

M.Vidal, J. Sánchez, J. Aparicio 59

CORE FADA - FADA mechanisms

Server side

The server side is divided in several parties:

– The FADA node: When the method getService() is called in the
FadaServiceMatch instance obtained by the client side, this method
will send a request to the FADA node. This request tells the FADA
node to take the FadaServiceItem instance provided by the service
provider at registration time, serialize it and return it to the caller.
In this moment the job of the FADA has been accomplished, and
will take no further actions.

– The http server on the service provider side: It is providing the
contents of a directory or a jar file whose url has been set as the
java.rmi.server.codebase property by the service provider at the
time it registered the service proxy in the FADA. When the
instance of net.fada.directory.SignedMarshalledObject is in the
client’s JVM and it calls the get() method, a class loader in the
client’s JVM will open that url and obtain the .class file that
describes the service proxy. If the java.rmi.server.codebase
property specified a directory (denoted by a trailing slash), only
that .class file will be sent to the client (and provided by the http
server on the service provider side). If the
java.rmi.server.codebase property specified a .jar file the whole .
jar file will be sent. If the service proxy only needs its own class to
work, the first approach saves time and bandwidth. If the service
proxy needs the aid of many classes that are not standard and
implemented in every JVM, it is better to embed them all in a jar
file, because all of them classes will be downloaded at once. As
the jar file is compressed, the downloading time is potentially less.
The role of the http server is to provide the .class or .jar file
requested by an HTTP GET request issued by the class loader in
the client’s JVM.

– The back-end service: Unless the service proxy is a self-contained
application, it will need to interact with a database, or to perform
some computation too expensive for the client’s JVM. The service
proxy must then communicate in some way (not specified nor
constrained by the FADA) with the back-end service. A typical
example is a service proxy that provides a flight reservation
service: the service proxy only sends the back-end service the
intention of the user to reserve a flight ticket, but is the back-end
service the one who resolves the concurrent access problem,
checks the availability of such ticket, charges the customer,
notifies the company, updates the database, etc.

M.Vidal, J. Sánchez, J. Aparicio 60

CORE FADA - FADA mechanisms

M.Vidal, J. Sánchez, J. Aparicio 61

CORE FADA - The FADA stub - skeleton compiler

The FADA stub - skeleton compiler

A client-server application will be formed from two software entities
executing in potentially separated machines. The client has to
request the server to perform certain operations, and the server must
perform them and return the results to the client. The business logic
of these operations is dependent on every application. The
communication between the client and the server, however, is not
part of the business logic, but must be dealt with and programmed on
both sides of the application. More than that, that layer of the
application can be standardized in a way that makes it easy to plug
different business logic implementations. This is what Sun
Microsystems did in the eighties when they developed the Remote
Procedure Call (RPC) framework, and again with the Java Remote
Method Invocation (RMI).

However, noting that the RMI framework is not ideal in all cases,
during the development of the FADA project it has been decided to
provide yet another remote method invocation mechanism. In
contrast with RMI, the transport layer can be changed easily, and can
be therefore adapted to a particular application needs.

In a remote call it is needed to transfer the call parameters to the
server side, and once the call has been performed, to return the
results back to the caller. In RPC this was accomplished by the
means of a standardized data representation format, the eXternal
Data Representation (XDR) format. In Java RMI, parameters and
return types are simply serialized, because there is no need to
provide a machine independent data format: on both sides of the call
there are data compatible Java Virtual Machine instances.

Within the FADA project it was decided to keep this simple approach
due to its inherently greater performance, because data is just
converted to a stream of bytes, rather than packed in data containers
that add an increased level of complexity.

The details of implementation and usage resemble those from the
RMI framework, but differ in some aspects:

– A default transport layer, consisting in a stream of bytes sent
over HTTP, is provided. The use of HTTP as the transport
protocol allows to use easily available HTTP proxies or
gateways, without the need to provide wrappers on the server
side.

M.Vidal, J. Sánchez, J. Aparicio 62

CORE FADA - The FADA stub - skeleton compiler

– The transport layer can be changed to whatever the service
developer feels more comfortable with, or depending on the
deployment scenario, whatever fits best the conditions
present. The binary over HTTP protocol is only given as a
default, and can easily be changed.

A developer wishing to take advantage of the FADA stub-skeleton
compiler must follow a short list of simple rules:

– The server-side class must implement an interface that extends the
interface net.fada.remote.Remote.

– The server-side class must extend the class
net.fada.remote.RemoteObject.

– The remote methods on the interface are tagged by stating that
they throw the exception net.fada.remote.RemoteException in the
throws clause.

– The parameter and return types of the method calls must refer to
classes that will be present on both the server and client classpath.
The use of interfaces present in the classpath to represent classes
that are not in the class path is allowed. However, this practice
forces the client to provide such classes in an HTTP server, what is
not always easy to accomplish. Therefore this practice is
discouraged unless absolutely needed.

– The server-side class must export itself by calling the method
export inherited from the class net.fada.remote.RemoteObject.
This method needs two parameters. The first parameter is an
instance of a class that implements the interface
net.fada.transport.ServerTransport. A default implementation is
provided by the class net.fada.transport.ServerTransportImpl. The
second parameter is an instance of a class that implements the
interface net.fada.transport.ClientTransport. A default
implementation is provided by the class
net.fada.transport.ClientTransportImpl.

– The result of the invocation of the method export is an instance of
a class that implements the interface net.fada.remote.Remote.
This class must be made available to the client of the service. The
method encouraged within the FADA framework is to embed that
class in the proxy for the service, or even to provide it as the proxy
itself, as long as the server object implements the interface that
will be used to register the proxy in the FADA.

M.Vidal, J. Sánchez, J. Aparicio 63

CORE FADA - The FADA stub - skeleton compiler

– The means by which the resulting object is made available to the
client is not constrained to use the FADA. However, it is an easy
way to accomplish that, and therefore it is encouraged to follow
the practice, either by registering the object itself or by embedding
the object in an instance of the service proxy.

After the server class has been developed, the stub and the skeleton
must be created. For that, the FADA development teams provides
the FADA stub – skeleton compiler. It comes bundled in a jar file
called fadagen.jar, a pun on the name of the stub/skeleton generator
of the RPC framework, rpcgen. The invocation of the compiler has
the following appearance:

java -jar [-classpath <additional class path>] fadagen.jar

[-classpath <additional class path>] <server class name>

For example, if the server class name is Server the invocation would
be something similar to this:

java -jar fadagen.jar Server

In the example no additional class path were given. In case they are
specified, the first classpath is used to provide the compiler with any
classes used by the server that may be needed for successful
generation of the stub and the skeleton. The second classpath is
used to provide the javac compiler with any classes used by the
server that may be needed for successful compilation of the
generated stub and skeleton. The result of the invocation (in
absence of errors) is a pair of new class files, named <server class
name>_Stub.class and <server class name>_Skel.class, where
<server class name> is substituted by the class name of the server
class, provided in the above command line. For example, if the
server class name is Server.class, two new files, Server_Stub.class
and Server_Skel.class will be created.

The obtained stub must be made available to the client of the
service. The usual way to accomplish this is to put the stub and all
needed classes in a jar file that is used as the codebase annotation of
a java.rmi.MarshalledObject that is then sent to the client. The FADA
uses exactly this mechanism to deliver the service proxies.

Use of different communication protocols
The default communication protocol implementation provided by

the classes ServerTransportImpl and ClientTransportImpl use HTTP as

M.Vidal, J. Sánchez, J. Aparicio 64

CORE FADA - The FADA stub - skeleton compiler

the transport protocol to send binary messages from the client to the
server and back. However, one may decide that plain HTTP is
suitable for his particular case. For example, a private medium may
be chosen. Or a protocol that ensures integrity of the message. Or
maybe something completely unrelated to TCP, if both the server and
the client have the capabilities to use a different type of network.

To use a different communication protocol the developer must
implement three interfaces in the package net.fada.transport:
ServerTransport, ClientTransport and EndPoint. Let’s see how they
look like:

package net.fada.transport;

import java.net.*;

public interface ClientTransport {

public void setUrl(String url)
throws MalformedURLException;

public byte[] callMethod(byte[] request)
throws net.fada.remote.RemoteException;

}

The interface ClientTransport defines two methods, setUrl and
callMethod. The first method, callUrl, is used by the RemoteObject
export method to make the implementation of the ClientTransport
class aware of the location in the network of the server side, that is,
the ServerTransport implementation class.

The second method, callMethod, takes as a parameter an array of
bytes that contain the binary representation of the call generated by
the stub class. This binary representation must be made available to
the ServerTransport implementation class whose URL has been
notified by the RemoteObject.export method via the call to the setUrl
method explained before.

The ServerTransport interface is the following:

package net.fada.transport;

public interface ServerTransport {

public net.fada.transport.EndPoint receiveCall()
throws net.fada.remote.RemoteException,
java.io.IOException;

public void start() throws java.io.IOException;

M.Vidal, J. Sánchez, J. Aparicio 65

CORE FADA - The FADA stub - skeleton compiler

}

This interface defines two methods, start and receiveCall. The first
method, start, is used by the RemoteObject instance to signal the
ServerTransport implementation class that it must start listening for
incoming requests from the client side, that is, the ClientTransport
implementation class.

The second method, receiveCall, must be made a blocking call. It will
be called by the skeleton class when it is ready to receive incoming
requests. When a request is sent from the client side (that is, the
ClientTransport implementation class) and received by the
ServerTransport implementation class the receiveCall method must
return from the call, returning an implementation of the interface
EndPoint. The skeleton will then use the EndPoint implementation
class to serve the request. The receiveCall method must not make
any effort to receive concurrent requests: the skeleton class takes
care of that.

The EndPoint interface is like this:

package net.fada.transport;

public interface EndPoint {

public byte[] getBytes();

 public void send(byte[] bytes) throws java.io.IOException;

 public void close();
}

The EndPoint interface has three methods: getBytes, send and close.
The first method, getBytes, obtains the received binary call
representation. This method is called by the receiver thread in the
skeleton.

The method send is used by the skeleton to send back the binary
response to the client (the ClientTransport implementation class that
is being used by the stub class).

The method close is used by the skeleton to force the release of any
resources in use by the instance of the class EndPoint, such as
sockets or Input/OutputStreams.

M.Vidal, J. Sánchez, J. Aparicio 66

CORE FADA - The FADA stub - skeleton compiler

A description of the communication scenario is as follows: the export
method on the RemoteObject has been called. The RemoteObject
receives the instances of the implementations of the interfaces
ServerTransport and ClientTransport, plus the URL where the server
(skeleton) will be visible. The RemoteObject calls the setUrl method
on the ClientTransport implementation class. Then the
ClientTransport implementation class is made available to the stub.
Then the start method is called on the ServerTransport
implementation class. The ServerTransport implementation class
starts listening for incoming requests. Then the export method on
RemoteObject returns the stub. The stub must be made then
available to the client side. Note that the stub class implements the
interface serializable, and will be transferred to the client side.
Therefore, the enclosed ClientTransport implementation class must
also be made serializable.

The client receives the stub class. A way to do this is by enclosing
the stub in an instance of a service proxy. That’s the way FADA does
it for its own stubs, and the recommended way for developers of
service proxies that use FADA.

When the client calls one of the stub methods (directly or via a call to
a method in the service proxy) it prepares the binary representation
of the method call, and uses the ClientTransport implementation
class callMethod method to send it to the server side (that is, the
ServerTransport implementation class). The ServerTransport
implementation class is blocked waiting for incoming requests in the
method receiveCall. When the request is received the receiveCall
method unblocks and returns the EndPoint instance to the skeleton.
There is no need to make the EndPoint class serializable, as it won’t
ever travel from the client to the server.

The skeleton then services the request by calling the appropiate
method in the RemoteObject class. That method may return a return
value. This return value is converted to a binary chunk of data that is
sent to the client side via the send method in the implementation
class of the interface EndPoint, constructed by the ServerTransport
implementation class method receiveCall. The binary data chunk
then arrives at the client side, the method callMethod in the
ClientTransport implementation class. This method returns the
binary data to the stub class, which then opens the binary data chunk
and retrieves the return types (or exceptions, if it is the case) and
returns them to the caller, the service proxy or the client application.

To implement a different communication protocol, the three
interfaces must be implemented. It amounts to a total of seven

M.Vidal, J. Sánchez, J. Aparicio 67

CORE FADA - The FADA stub - skeleton compiler

methods, the majority of which are not complicated at all. The meat
is mainly in the callMethod and receiveCall methods, which encode
and decode the binary data chunk in messages that can be
transferred by using the communication protocol of choice, be it
HTTP (as in the default implementations), HTTPS, SSL, or a brand new
encrypted-integrity-checked-non-repudiable communication protocol.

M.Vidal, J. Sánchez, J. Aparicio 68

CORE FADA - Multicast extensions

Multicast extensions

Althogh FADA was born to work properly in a WAN environment, its
use can be extended to LAN environments working in a similar
manner than JINI NetworkTM does it.

For this reason, certain extensions has been added to the
functionality provided by a FADA node when it works in a LAN
environment or other kind of networks where communications over
multicast protocols/addresses are allowed.

There are two extensions added. Both are related to event
management, but one of them is the base for the other one:

● Events: Allows to send and receive events related to facts
occurred in the FADA nodes.

● Discovery: Allows to discover all the active nodes present in the
same LAN where discover agent performs the discovery.

In the actual implementation of these multicast extensions, the
multicast address and port used to send and receive the UDP packets
involved when discovery mechanisms or event notifications are
performed is specified in the table below:

Multicast address 224.200.200.244

Multicast port 4004

NOTE: These constants are defined in the JAVA class
net.fada.Constants. If you need to change the value of this constants
for any reason, change the values of these contants specified inside
quoted class and recompile the FADA source to apply properly the
changes.

Multicast events
Multicast events implemented in FADA will only work porperly in

LAN environments due a multicast protocol is used for sending and
receiving UDP packets containing the events. We discard in purpose
the WAN environments (Internet particularly) as multicast allowed

M.Vidal, J. Sánchez, J. Aparicio 69

CORE FADA - Multicast extensions

medium due most of the routers that mesh this kind of network are
not able to support routing protocols for multicast addresses.

This event management mechanisms have been implemented over a
unreliable multicast protocol.

The events are sent to the network using UDP packets containing the
JAVA object representing the event in a serialized format. It implies
that the event enabled receivers must have in its CLASSPATH the
JAVA classes representing these events for a correct desearialization
and re-instantiation in its own JVM.

In the next chapter, it is shown the event hierarchy designed for the
FADA event management.

Events hierarchy
The event hierarchy implemented for FADA event management is

shown in the next picture:

The parent class for all events present in the FADA event
management is called FadaEvent. From this agnostic event
representation class that encloses all the FADA related events hangs
two subtypes from it:

● StructureEvent: This kind of event and all of its
subimplementations are intended to represent events related to

M.Vidal, J. Sánchez, J. Aparicio 70

FadaEvent

StructureEvent DirectoryEvent

DiscoveryEvent AnnouncementEvent RegistrationEvent

CORE FADA - Multicast extensions

facts occurred and enclosed to the FADA structural functionality
field. In other words, the events representing all the stuff related to
the structure of the FADA platform as discoveries or
announcements (useful for create links between nearby nodes).

The subimplementations defined for this event are:

● DiscoveryEvent: This event is used to perform the discovery of
the FADA nodes present in the same LAN. This event will be
accepted and processed by the FADA nodes enabled to dispatch
multicast events. This kind of event is useful for a FADA-enabled
applications to discover nodes avoiding to have any customized
configuration for searching nodes.

● AnnouncementEvent: This event is used to perform the
discovery of the FADA nodes present in the same LAN, and
create a neighborhood links between FADA nodes. This event will
be accepted and processed by the FADA nodes enabled to
dispatch multicast events. This kind of event is ONLY useful for
the FADA node's application. The main goal for using this event
by FADA nodes is for meshing (in an automagically way) the
FADA network present in the same LAN.

● DirectoryEvent: This kind of event and all of its
subimplementations enclose the representation of all events
related to the FADA directory functionality field.

The subimplementations defined for this event are:

● RegistrationEvent: This event is used to notify that something
was happens about the registration of a FADA service proxy or a
set of FADA service proxies with a specific characteristics
(FadaServiceTemplate). This event is always generated and sent
by FADA nodes and received and processed by all FADA-enabled
applications that using the FadaHelper utility class. The
applications which are interested in intercept these events must
be registered as listener for this kind of events in the FadaHelper
used by them.

Multicast discovery
The multicast discovery mechanism is truly useful when the FADA

technology is used by a software solution completely placed in a LAN
environment. The mechanism is easy to understand and is explained
in the following points:

M.Vidal, J. Sánchez, J. Aparicio 71

CORE FADA - Multicast extensions

● Discoverer agent sends a DiscoveryEvent to the network. This
DiscoveryEvent is created passing to the constructor an
AnnouncementPacket object in which is specified the information
about the location of the discoverer agent who sends the event.

● Discoverer agent actives a process to receive and dispatch all
the responses to the DiscoveryEvent by the multicast-enabled
FADA nodes presents in its same LAN.

● Discovered nodes sends its own location information as response
to DiscoveryEvent sent by discoverer agent. This location
information is useful for creating a FadaLookupLocator pointing
to it by the discoverer agent aware application. The Java object
that represents this information is the
net.fada.directory.tool.FadaNodeInfo.

● Discoverer agent process receives the response sent by the
nodes and dispatch the information to all the listeners registered
which are interested in the FADA node discovery.

The utility class to perform the discovery mechanism by the FADA
enabled applications is called net.fada.toolkit.FadaDiscovery. In
later chapters, an example shows how to use properly this class to
discover FADA nodes using the multicast discovery mechanism.

NOTE: Previous implementation of a discovery agent helper can still
be found in the net.fada.toolkit.FadaHelper (“discovery” method)
but IS COMPLETELY DEPRECATED AND IT MAY NOT BE USED.

Multicast Announcement
The multicast announcement mechanism is very similar to the

multicast discovery mechanism explained in the previous chapter,
but the main difference is the target components which will use it. In
this case, this mechanism is ONLY useful by the multicast enabled
FADA nodes. The objective of this mechanism is not only to discover
nearby FADA nodes but linking both as neighbors. This mechanism
permits to mesh the FADA network in a transparent manner.

The mechanism is performed according to the steps explained in
below points:

● Announcer node sends an AnnouncementEvent to the network in
a serialized format embedded in a UDP packet. This
AnnouncementEvent contains an AnnouncementPacket with the
location information of the announcer node.

M.Vidal, J. Sánchez, J. Aparicio 72

CORE FADA - Multicast extensions

● Multicast enabled FADA nodes in response to the
AnnouncementEvent received performs a connection with the
announcer node establishing with it a neighborhood bidirectional
relationship. The mechanism to establish this relationship is the
same that is used when FADA node administrator manually
connects nodes using web based management or lookup
originator receives a lookup result from other FADA node
performed during the extension lookup mechanism.

For now, this mechanism is not invokable from web based
management or, in other words, manually executed and is only
performed when a multicast enabled FADA node is starting up.

Registration events
In some cases can be useful to FADA enabled applications to be

aware that some event related to a particular kind of service or
services have occurred. For instance, it may be interesting that an
application (acting as FADA service proxy consumer) is notified when
a particular service has been registered or deregistered from the
FADA network (action performed by the FADA service proxy
provider).

The RegistrationEvent is a JAVA object that contains the embedded
information:

● All useful information about the FADA service proxy involved in
the registration action. This information is wrapped in a only
class (net.fada.directory.tool.FadaServiceMatch).

● Type of the registration action has occurred. This type is
characterized with an integer. There are three types:

● NOMATCH_MATCH: integer value is 0

● MATCH_MATCH: integer value is 1

● MATCH_NOMATCH: integer value is 2

A multicast enabled FADA node sends a new RegistrationEvent to the
network in response to certain actions taken place in it and related to
the registration of a service:

● Service has been registered: Node sends a RegistrationEvent
specifying the type of the event as a NOMATCH_MATCH
RegistrationEvent.

M.Vidal, J. Sánchez, J. Aparicio 73

CORE FADA - Multicast extensions

● Service has been re-registered: Node sends a
RegistrationEvent specifying the type of the event as a
MATCH_MATCH RegistrationEvent.

● Service has been deregistered: Node sends a RegistrationEvent
specifying the type of the event as a MATCH_NOMATCH
RegistrationEvent.

As we can see all the events occurred in each multicast enabled
FADA node will be sent to the network ignoring if they are consumed
or not.

The way to consume this events by the FADA enabled applications is
using the utility class net.fada.toolkit.FadaHelper. (the same class
that is used to simplify the FADA service proxies registration and its
renewal in a FADA node). In this case, the application which wants to
be notified when RegistrationEvents related to a particular kind of
service occur MUST implemented the interface
net.fada.directory.tool.RegistrationEventListener. This
implementation will be registered as listener for the events occurred
according to the kind of the service specified by the
net.fada.directory.tool.FadaServiceTemplate passed as parameter
during the listener registration phase.

To register the listener is so easy as calling to the FadaHelper's
method called addRegistrationEventListener passing as the first
parameter the listener and as the second one, an instance of
net.fada.directory.tool.FadaServiceTemplate which specifies in
what kind of service proxies is interested to consume its related
registration events.

In later chapters, it is shown an example demonstrating how to
enable a FADA enabled application to be aware of RegistrationEvents.

M.Vidal, J. Sánchez, J. Aparicio 74

CORE FADA - Code Examples

Code Examples

One of the main criticisms about the Jini Networking Technology is
that its Application Program Interface (API) is not straightforward to
understand and use. Having used it, and having to agree with this
opinion, the developers of the FADA decided to simplify the FADA API
without sacrificing flexibility and control over the execution.

Although it is possible to use the FADA API classes in a Jini style, that
is, going down to the lowest level to build an application from the
basic building blocks, the primary way to use the FADA is through a
helper class, called consequently FadaHelper, that makes it easy to
perform the most common operations with the FADA.

This class has methods for registration of services and to search for
interface implementations. The class method has parameters and
return types that may require the invocation of lower-level classes
and methods, but not to the extent to make it cryptical.

NOTE: An additional document called “FADA Tutorial” is being
written to explain with more detail all the posibilities of use of the
FADA API and all its extensions. A draft release of this document can
be retrieved from the official FADA site.

Discovering nodes using multicast discovery
Before to register a service proxy in a FADA network is needed to

access to one of the nodes presents in it. In case of the FADA network
is completely place in a LAN environment, the multicast discovery
can be used by FADA enabled applications to find one or more FADA
nodes. To perform this multicast discovery is used the utility class
net.fada.toolkit.FadaDiscovery. But for using this class before is
needed to develop a class that implements the interface
net.fada.toolkit.DiscoveryListener. For instance:

public class MyDiscoveryListener implements DiscoveryListener{

public void discovered (FadaLookupLocator locator){

System.out.println(“Fada Node discovered at:” +

locator.toString());

}

}

M.Vidal, J. Sánchez, J. Aparicio 75

CORE FADA - Code Examples

Now this class is registered as discovery listener in a instance of a
FadaDiscovery class. This listener will be notified for each response
from the FADA node present in the LAN. The discovery mechanism
starts when the listener is registered in the FadaDiscovery instance
sending to the network a DiscoveryEvent. In next paragraph, it is
shown a little code snippet that uses the FadaDiscovery utility class
to perform the multicast discovery:

public static void main(String[] args){

// constructs the customized discovery events listener

MyDiscoveryListener mdl = new MyDiscoveryListener();

// creates an instance of discovery agent

FadaDiscovery discoverAgent = new FadaDiscovery();

// registers the listener and (in transparent way to the

// programmer) the DiscoveryEvent is sent to the network by

// the agent

discoverAgent.addDiscoveryListener(mdl);

// until “ENTER” key is not presset the program is waiting for

// receiving discovery responses from the FADA nodes

System.out.println(“PRESS ENTER TO INTERRUPT THE

DISCOVERY”);

System.in.read();

}

Registering as RegistrationEvent listener
In similar way to explained in the previous chapter, to consume the

RegistrationEvents produced by multicast enabled FADA nodes, a
class that implements the interface
net.fada.directory.tool.RegistrationEventListener must be
developed. This class will be notified when RegistrationEvents for a
certain kind of service proxies occurs. For instance:

public class MyRegistrationEventListener implements

net.fada.directory.tool.RegistrationEventListener {

public MyRegistrationEventListener(){

// empty constructor

M.Vidal, J. Sánchez, J. Aparicio 76

CORE FADA - Code Examples

}

public void serviceRegistered(RegistrationEvent ev){

FadaServiceMatch match = ev.getSource();

System.out.println(“Service Proxy with ID: “ +

match.getFadaServiceID() + “ has been registered!!);

}

public void serviceDeregistered(RegistrationEvent ev){

FadaServiceMatch match = ev.getSource();

System.out.println(“Service Proxy with ID: “ +

match.getFadaServiceID() + “ has been deregistered!!);

}

public void serviceReregistered(RegistrationEvent ev){

FadaServiceMatch match = ev.getSource();

System.out.println(“Service Proxy with ID: “ +

match.getFadaServiceID() + “ has been reregistered!!);

}

}

The following code snippet shows how register the listener in the
FadaHelper utility class.

public static void main(String[] args){

// creates the listener

MyRegistrationEventListener listener = new

MyRegistrationEventListener();

// creates an instance of FadaServiceTemplate to specify in

// which service proxy's related registration events the

// application is interested

FadaServiceTemplate template =

new FadaServiceMatch(

new String[“entry1”],

null,

new String[“net.fada.examples.service1Interface”]

);

// creates the FadaHelper (our RegistrationEvent dispatcher)

FadaHelper helper = new FadaHelper(new FadaLeaseRenewer());

// registers the listener and the template

// from here on listener will receive all the

M.Vidal, J. Sánchez, J. Aparicio 77

CORE FADA - Code Examples

// RegistrationEvents that matching with the template

helper.addRegistrationEventListener(listener, template);

...

// deregisters the listener to give up receiving notifications

// about RegistrationEvents

helper.remoteRegistrationEventListener(listener);

}

Registering a Service
In order to make a service proxy available to the FADA federation,

it must be registered on a FADA node. The FadaHelper method to
perform this is the register method, which has the following
signature:

public FadaServiceID register(

 FadaInterface fp,

 java.io.Serializable item,

 FadaServiceID id,

 String[] entries,

 long leasePeriod,

 net.fada.directory.security.SecurityWrapper wrapper,

 String annotation,

 RenewalEventListener listener)

throws FadaException,

 IOException,

 NullPointerException,

 java.security.InvalidKeyException

The first parameter is the FADA proxy of an active FADA node where
the service proxy is to be registered (this proxy can be obtained
using the net.fada.directory.FadaLookupLocator). Note that no
matter where the service proxy is registered, if the FADA node
belongs to a federation of FADA nodes, the registered service proxy
will be accessible to all members of that federation.

The second parameter is the service proxy itself. It must be a
serializable object, otherwise it won’t be able to travel from the
server to the FADA node, and from the FADA node to the requesting

M.Vidal, J. Sánchez, J. Aparicio 78

CORE FADA - Code Examples

client. It must implement at least one interface that is known to one
or more clients.

The third parameter is the FADA service identifier related to the
service proxy which will be registered. In case of it is the first
registration of the service proxy this parameter must setup to null
value. It this method is called to perform a reregistration, the value of
this parameter must be equals to the returning value obtained in the
first registration.

The fourth parameter is an array of Strings that contain qualifying
properties of the service proxy. For example, if a service proxy is
related to hotels, the word “Hotel” could be part of the entry set.
This allows clients to fine search the FADA federation, or to broaden
it, if they prefer. More on this will be seen on the section on
searching or looking up proxies.

The fifth is a long, containing the number of milliseconds the server
wants the service proxy to stay registered as minimum. This quantity
will be the initial lease time for the registration of the proxy, provided
that it is accepted by the contacted FADA node.

The sixth parameter is the securityWrapper object used to apply the
security mechanisms which signs the service proxy registered
allowing to potencial service proxy consumers to check the identity
and integrity of this when they performs the lookup mechanisms.
More about security mechanisms applied to consuming FADA service
proxies is detailed at chapter [FADA security wrappers]. If it is not
wanted to apply this security constrains to the registration of the
service proxy, the value of this parameter must be setup to null
value.

The seventh parameter is the codebase annotation where client
consumers of this service proxy can download the needed classes to
recreate the service proxy in its own JVM after lookup phase. The
codebase annotation can be setup in two ways: using this parameter
or using the java.rmi.server.codebase JVM system property. We
encourage to use the first way due it gives more flexibility.

The eighth parameter and the last is the object that implements the
interface net.fada.directory.tool.RenewalEventListener which will be
notified in case of the underlaying process in charge of renewing the
lease of the service proxy registered is unable to perform the
renewal.

M.Vidal, J. Sánchez, J. Aparicio 79

CORE FADA - Code Examples

The result of the call is a FadaServiceID. Every registered proxy
obtains a globally unique identifier. This identifier can be later used
with some other methods of the FadaHelper.

You may have noticed that the FadaHelper class register method is
not marked static. It means that you need to create an instance of
the class in order to use the registration feature. The constructor is as
follows:

public net.fada.toolkit.FadaHelper(

net.fada.directory.tool.FadaLeaseRenewer)

throws java.lang.NullPointerException;

The constructor takes as a parameter an instance of a class called
FadaLeaseRenewer. As its own names states, this class will be in
charge of automatically renewing the service proxy lease in behalf of
the server. By making the registration method non-static the
developer is forced to create an instance of both the FadaHelper and
the FadaLeaseRenewer. These instances should be created from
within the server code. In this way, should a server crash occur, the
registration lease would be destroyed with it, and it would eventually
expire.

The FadaLeaseRenewer constructor is as follows:

public net.fada.directory.tool.FadaLeaseRenewer();

As you can see, it takes no parameters. Upon registration of service
proxies the FadaHelper notifies the FadaLeaseRenewer and the latter
keeps renewing the registration leases indefinitely.

The registration method works as follows:

– It contacts the FADA node whose FADA proxy was given as a
parameter.

– It wraps the service proxy in an instance of
net.fada.directory.SignedMarshalledObject.

– It constructs an instance of
net.fada.directo ry.Fad aSe rvice Ite m that wraps the
service proxy passed as a parameter, together with the entries
provided. The service proxy is not sent as-is, but rather wrapped
in an instance of java.rmi.MarshalledObject.

M.Vidal, J. Sánchez, J. Aparicio 80

CORE FADA - Code Examples

– It uses the FADA proxy methods to notify the FADA node of the
intention to register a service proxy. The FADA proxy method
sends the FadaServiceItem instance and requests a lease time
as specified by the parameter leaseTime.

– If the FADA node accepts the specified lease time, the proxy,
together with the information wrapped in the FadaServiceItem
instance, is stored in the FADA node, and it returns an instance of a
class that digests all the registration information.

– This registration information is stored by the FadaHelper, which
then only returns the FadaServiceID to the caller of the method
register.

The method register in the class FadaHelper is overloaded to allow
different registration scenarios.

How does the net.fada.directory.SignedMarshalledObject
work?

In summary, net.fada.directory.SignedMarshalledObject is a
reimplementation of java.rmi.MarchalledObject in which has been
added extra security mechanisms. For further information about the
security mechanisms added to this class see the chapter [FADA
security wrappers]. By the way, analogous to its predecessor,
net.fada.directory.SignedMarshalledObject is an instance of a is a
serializable object that contains a serialized instance of a serializable
object within, and keeps an annotation with it. This annotation
denotes the resource where the .class files for the wrapped
serializable object can be found. The
net.fada.directory.SignedMarshalledObject has no magical ways to
know where those class files can be found. Instead, it relies in the
property java.rmi.server.codebase or setted up by a parameter
passed in the constructor for this object. In order for a
SignedMarshalledObject to work properly this property or parameter
must be set with an appropriate value. If, for instance, a
SignedMarshalledObject is constructed with an instance of the class
Foo, the codebase annotation must point to a resource where the file
Foo.class (and associated classes) can be found. For example, if the
URL http://myserver.mydomain.com contains an HTTP server running,
and the path /classes/myJar.jar contains all classes needed, then a
valid codebase annotation can be
http://myserver.mydomain.com/classes/myJar.jar.

M.Vidal, J. Sánchez, J. Aparicio 81

CORE FADA - Code Examples

The SignedMarshalledObject will be sooner or later serialized and
sent to a client. The client will deserialize the instance of the
SignedMarshalledObject. When he does so, the wrapped class is still
stored in serialized format within the instance of the
SignedMarshalledObject. If the client then calls the
SignedMarshalledObject’s get() method, it will attempt to deserialize
the class contained in the SignedMarshalledObject. In doing so it will
need the classes used by the serialized instance. To download the
classes it will open the URL provided as the annotation. It is the
responsibility of the creator of the instance of
SignedMarshalledObject to provide a correct codebase annotation.
There is nothing the client can do if it obtains an instance of a
SignedMarshalledObject whose codebase annotation points nowhere,
an invalid URL, or a URL that doesn't contain the expected classes. In
all of these cases a ClassNotFoundException will be thrown.

The FADA methods make no explicit reference (if you are using the
helper classes) to the net.fada.directory.SignedMarshalledObject
class, but they use it extensively when it comes to registering and
searching the FADA architecture. Their appearances have been
intentionally hidden from the API to simplify matters, but both the
client and the server side must be aware of their presence, and must
understand how it works, and the security hazards that may arise
when foreign code is allowed to execute in a JVM instance. For more
information, see the Sun’s Java website (http://java.sun.com) and the
information on marshalled objects.

Deregistering a service
The registration of a service proxy is not kept indefinitely by the

FADA node, but only for the duration of a lease period. The
FadaHelper uses the FadaLeaseRenewer instance provided at
instantiation time to renew this lease indefinitely. If the server side
wishes to deregister the service proxy for whatever reason, it can do
so by calling the deregister method, whose signature is as follows:

public void deregister(

net.fada.directory.tool.FadaServiceID

);

Note that the method is not static either. The FadaServiceID
instances obtained upon registration of service proxies, along with
more information returned by the FADA node, such as the

M.Vidal, J. Sánchez, J. Aparicio 82

CORE FADA - Code Examples

registration lease, is kept internally by the FadaHelper class. This
information is of interest only for the registerer, the server class. By
making the registration and deregistration methods non-static, and
thus forcing the server side to call the constructor of the class
FadaHelper and FadaLeaseRenewer, this sensitive information is kept
hidden from foreign eyes and hands. No one can deregister a service
proxy, except the server which registered, and the administrator of
the FADA node where it was registered.

Upon calling the method deregister, the FadaHelper searches its
internal registry, retrieves the information needed, and asks the
FadaLeaseRenewer to cancel and stop renewing the lease associated
with the service proxy whose FadaServiceID was given in the call to
deregister.

A benefit of having all this information hidden in an instance of
FadaHelper is that no one else knows what is the lease for the
registered service proxy. In this way it is very difficult to accidentally
(or intentionally) deregister a service proxy whose associated server
is working without problem.

Looking up a Service
The class FadaHelper also contains a method to perform lookup of

a set of service proxies in the FADA architecture. The signature of
such method is:

public static java.lang.Object[] lookup(

java.lang.String url,

java.lang.String[] interfaces,

net.fada.directory.tool.FadaServiceID id,

java.lang.String[] entries,

int maxResponses,

long timeout)

throws net.fada.FadaException,

java.io.IOException,

java.lang.ClassNotFoundException;

The first parameter is the url of a FADA node. Note that, in order to
find a service proxy, it is not needed to start the lookup request on
the same FADA node as the one in which the service proxy was
registered. The FADA architecture takes care of extending the search
throughout all the neighbors of the FADA node that receives the
lookup request from the client.

M.Vidal, J. Sánchez, J. Aparicio 83

CORE FADA - Code Examples

The second parameter is an array of strings that contains the names
of the interfaces it is desired to look for. If it is wished to look for an
implementation of the interface com.fetishproject.HotelSearch, for
example, this parameter must contain a string with the contents
“com.fetishproject.HotelSearch”.

The third parameter is the service id of a particular service proxy.
This allows to search only for a specific implementation of the
interfaces. If it is known that a certain implementation of a certain
set of interfaces has been registered in the FADA architecture, and its
FadaServiceID is known to the client, it may request the FADA
architecture to search and retrieve just this particular service proxy.
Note that in this case the maximum number of proxies returned will
be one, as no two service proxies may have obtained the same
FadaServiceID. FadaServiceIDs are globally unique.

The fourth parameter provides a way to narrow the search. Following
the HotelSearch example given above, it may be wished to select
only service proxies that were registered together with the keyword
“Rome”, for example. In this case, the fourth parameter would
contain a string with the word “Rome”, and only those proxies that
were registered with at least this entry would be returned.

The fifth parameter is the maximum number of responses wanted. In
a FADA federation there may be an indefinite number of service
proxies, and probably the client is not interested in all of them. By
specifying a limit in the form of this parameter it is possible to restrict
the search to a maximum number of responses. In this way the
amount of memory used by the client may be controlled.

Finally, the sixth parameter is the maximum number of milliseconds
the client wants to wait for responses. Knowing that the FADA
architecture has an unbounded size, and that there is no way to know
if all the FADA nodes have been visited (due to the lack of a central
coordination entity), the client puts the limit on the time it wants to
wait for results.

The result is an array of Object. These objects are the service
proxies that match the query parameters. All of them implement all
of the specified interfaces (if any), so you can cast them onto a
variable of type the interface of interest, and call the methods in the
interface.

M.Vidal, J. Sánchez, J. Aparicio 84

CORE FADA - Code Examples

How does the matching mechanism work?
The lookup parameters are three: the FadaServiceID, the set of

interfaces and the set of entries. Once received by the FADA node, it
considers a service proxy matches the lookup requirements if it has
the same FadaServiceID as the one provided, and it implements all of
the provided interfaces, and it has an entry set that features at least
one matching entry for every provided entry. Entries are compared
on a byte by byte basis.

Each and every of these parameters can be null. A null parameter is
not taken in account when matching service proxies. So if you
specified a null FadaServiceID only the interfaces and entries will be
compared to give a match. If all of the parameters are specified as
null, all the proxies registered will match the query, so it isn’t a very
good idea to specify all parameters as null, unless you really want all
of the proxies registered in the whole FADA architecture (remember
that lookup requests aren’t limited to a FADA node unless explicitly
stated in the lookup parameters).

The lookup method is overloaded so it is not necessary to specify null
for some of the parameters. Default values will be used if any of the
overloaded methods are used when searching the FADA architecture.

Complete example
In this section a complete example on the use of the FADA to

distribute service proxies will be provided. A FADA enabled service
consists of two parts: the server and the service proxy. An additional
boot-strap part will be necessary to register the service proxy in the
FADA. Note that this part should be as tightly tied to the life-cycle of
the service as possible. In this way the leasing mechanism is be as
effective as can be.

First of all an interface for the service must be chosen. As an
example a remote printer service will be provided. As such interface
does not exist it will be created in this example.

A printing service should have a method to print something. This
something will be a file. Therefore, the interface will look like this:

import java.io.*;

public interface RemotePrinter {

public void print(File file) throws IOException;

}

M.Vidal, J. Sánchez, J. Aparicio 85

CORE FADA - Code Examples

It has only one method, but given the nature of the service little more
can be done. The only method is called print, and accepts a
java.io.File as a parameter. It is declared to throw a
java.io.IOException in case there is a problem retrieving the file.

In order to make use of this interface the client must have a copy of it
in the classpath, both at compile and at run time.

Service provider side
The service provider is responsible for both the creation of the

server and the creation of the service proxy. In the first step the
server will be created.

import java.net.*;

import java.io.*;

import net.fada.toolkit.*;

import net.fada.directory.tool.*;

public class Printer {

int portNumber;

ServerSocket serverSocket;

Thread runner;

public Printer(int portNumber) throws IOException {

this.portNumber = portNumber;

this.serverSocket = new ServerSocket(portNumber);

}

class ListenerThread implements Runnable {

public void run() {

for(;;) {

Socket clientSocket = null;

try {

clientSocket = serverSocket.accept();

} catch(Exception ex) {

continue;

}

Thread serverThread = new Thread(

new ServerThread(clientSocket)

M.Vidal, J. Sánchez, J. Aparicio 86

CORE FADA - Code Examples

);

serverThread.start();

}

}

}

class ServerThread implements Runnable {

Socket s;

public ServerThread(Socket s) {

this.s = s;

}

public void run() {

InputStream is = null;

try {

is = s.getInputStream();

ByteArrayOutputStream baos = new ByteArrayOutputStream

();

int read = -1;

byte[] chunk = new byte[1024];

while((read = is.read(chunk)) != -1) {

baos.write(chunk, 0, read);

}

// All bytes read, now print them

/*

 * The interaction with a real printer has been left

out

 * of the example because it adds nothing to the

 * illustrative purposes.

 */

} catch(Exception ex) {

}

}

}

public void start(String serverUrl, int port, String

fadaUrl)

throws Exception {

// Create the instance of the service proxy

PrinterProxy pp = new PrinterProxy(serverUrl, port);

// Prepare listener thread

runner = new Thread(new ListenerThread());

M.Vidal, J. Sánchez, J. Aparicio 87

CORE FADA - Code Examples

// Start listening for requests

runner.start();

// Prepare lease renewer

FadaLeaseRenewer flr = new FadaLeaseRenewer();

// Prepare the FadaHelper instance

FadaHelper fh = new FadaHelper(flr);

// Register the service proxy in a FADA node

FadaServiceID id = null;

FadaLookupLocator locator = new FadaLookupLocator(fadaUrl);

id = fh.register(

locator.getRegistrar(),

pp,

null,

 new String[] {PrinterProxy},

 10000L,

 null,

 “http://server:port/where_codebase_is.jar”,

 null);

}

public static void main(String[] args) throws Exception {

// Get parameters

// First parameter is the port number

int portNumber = Integer.parseInt(args[0]);

// Second parameter is the server host name, needed for the

proxy

String url = args[1];

// Third parameter is the url of the FADA node

// Discovery mechanisms could be used here

String fadaUrl = args[2];

// Create the instance of the server

Printer me = new Printer(portNumber);

// Start the server

me.start(url, portNumber, fadaUrl);

}

}

M.Vidal, J. Sánchez, J. Aparicio 88

CORE FADA - Code Examples

Note that the server need not implement any interface. The client
will only see the service proxy, so the server class can decline to
implement the created interface. In fact, the server class needn’t
even be coded in the Java programming language. Only the service
proxy needs to. But for the sake of clarity, the server will also be
coded in Java.

The constructor accepts a port number, and attempts the creation of
an instance of the class java.net.ServerSocket. If the creation of
the ServerSocket fails (for example, because the port is already used)
the constructor throws an java.io.IOException and fails.

As the server must be able to serve multiple requests, a thread is
spawned for each request. Each thread will collect the data sent
from the client and then send it to the printer. More efficient ways for
data collection can be used, but the point in this example is to
illustrate the use of the FADA architecture.

This particular server won’t print anything at all, as the interface with
the real printer has not been defined. However, that’s all this
implementation is missing. If you want you can write some
information to standard output when the file is received, or you can
interact with a real printer. This code is just an example of how to
develop the server and the proxy, and how to use service proxies
from clients.

The service proxy must also be developed by the service provider.
As the communications protocol used between the service proxy and
the server is only of interest for the service provider, it’s up to him to
decide what to use. In this example a simple byte stream has been
used, with no control fields. The basic assumption is that the printer
can understand any type of binary stream data, or that both the
server and client sides agree that only one kind of data (for example,
text files) will be ever sent. All these agreements must be known in
advance by both the server and the client, and the source of such
agreements can be the same source as the entity hosting the
interface. If this is an impromptu service (like in the example), both
the client and the service already know the restrictions and
implications.

The code for the service proxy is the following:

import java.io.*;

import java.net.*;

M.Vidal, J. Sánchez, J. Aparicio 89

CORE FADA - Code Examples

public class PrinterProxy implements RemotePrinter, Serializable

{

String host;

int portNumber;

public PrinterProxy() {

// For serialization purposes

}

public PrinterProxy(String host, int portNumber) {

this.host = host;

this.portNumber = portNumber;

}

public void print(File file) throws IOException {

// Prepare to read the file

FileInputStream fis = new FileInputStream(file);

// Open connection with the server

Socket s = new Socket(this.host, this.portNumber);

// Get the channel for writing

OutputStream os = s.getOutputStream();

// Read the file, and write to the server

byte[] chunk = new byte[1024];

int read = -1;

while((read = fis.read(chunk)) != -1) {

os.write(chunk, 0, read);

}

fis.close();

os.close();

s.close();

}

}

The service proxy is the link between the client application and the
server. It will be delivered to the client wrapped by an instance of a
net.fada.directory.SignedMarshalledObject. As such, the
embedded object (the service proxy) must be converted to a stream
of bytes prior to be sent within a MarshalledObject. The service

M.Vidal, J. Sánchez, J. Aparicio 90

CORE FADA - Code Examples

proxy must be serialized. An object can be serialized if it implements
the interface java.io.Serializable and it has a no-argument
constructor. Therefore the service proxy implements the interface
java.io.Serializable and defines a no-argument constructor, with
remarks stating why it is needed. Apart from this interface, the
service proxy also implements the interface known to the client, and
the only knowledge the client has about the service proxy: that it
implements a known interface. When the client gets the service
proxy it has no way to know what class it belongs to, whether that
class is in its classpath, or any other detail about the implementation.
But by knowing for sure that implements the interface RemotePrinter
the client can blindly cast the service proxy instance onto a variable
of type RemotePrinter, and use the interface’s methods. The class
the service proxy belongs to has been downloaded by the
net.fada.directory.SignedMarshalledObject instance when it was
requested to return the embedded object instance. That’s why the
instance of the class net.fada.directory.SignedMarshalledObject
needs the codebase annotation: to download the remote code, and
that’s why the codebase property must be set on the server side:
because the client doesn't know where it comes from.

Client side
The client on this example will be a program that will open an file

and send it to the remote printer. It must locate a FADA node,
request it to search for the appropriate service proxy, and use it to
perform the operation.

import net.fada.toolkit.*;

import java.io.*;

public class PrinterClient {

public static void main(String[] args) throws Exception {

// Get the parameters

// First parameter is the name of the file to print

String fileName = args[0];

// Second parameter is the url of the FADA node to contact

String fadaUrl = args[1];

// Declare a variable to cast the service proxy onto

RemotePrinter service = null;

M.Vidal, J. Sánchez, J. Aparicio 91

CORE FADA - Code Examples

// Prepare the lookup request parameters

String[] interfaces = new String[] { “RemotePrinter” };

// Perform the lookup procedure

Object[] proxies = FadaHelper.lookup(

fadaUrl, new String[]{ “PrinterProxy” }, null,

interfaces, 1, 10000L

);

// Take one of the returned service proxies

service = (RemotePrinter) proxies[0];

// Invoke the service method

service.print(new File(fileName));

}

}

This simple client will perform all its business logic in the main()
method. It simply takes two arguments: the name of the file to print,
and the url of a FADA node. As in the server side code, discovery
methods can be used. But for the example it will be assumed that
the client already knows the url of a FADA node.

Note that the FADA node whose url is given as a parameter need not
be the same FADA node as the one used in the registration of the
service proxy. It is sufficient that the FADA node contacted when
performing the lookup is connected to the FADA node that contains
the registered service proxy. This connection need not be direct. As
long as both FADA nodes belong to the same federation they will be
able to see each other.

Notes about JAVA sandbox and dynamic code loading
Marshalled Objects work on the basis of downloadable code. That

means that the actual implementation of a class is downloaded from
somewhere to the JVM. The execution of foreign code raises a horde
of potentially hazardous situations. The foreign code could, for
example, decide to delete all of your home directory, or start a DOS
(Denial of Service) attack taking your machine as the origin attacker.

For these and other reasons, downloaded code is specially scrutinized
in search of potentially hazardous instructions (as well as bytecode

M.Vidal, J. Sánchez, J. Aparicio 92

CORE FADA - Code Examples

checked upon download). A security manager makes sure that
downloaded code is not allowed to do any operation it hasn’t been
explicitly allowed to.

The user of downloadable code specifies the set of allowed
operations by the means of a policy file. The policy file contains the
policies applicable to downloaded code. The security manager is the
mechanisms by which these policies take effect.

Both the server and the client use downloadable code. The server
first contacts a FADA node and downloads the proxy for the FADA.
This code was not in the classpath of the server, and therefore it is
downloaded code. Therefore, the server needs a security manager
and a policy file, because otherwise the JVM refuses to execute
downloaded code.

The client uses two pieces of downloadable code. It first contacts a
FADA node and downloads its FADA proxy. It then uses the FADA
proxy to locate and download the service proxy. Finally, it uses the
service proxy. Neither the code for the FADA proxy nor the code for
the service proxy were in the classpath of the client, and therefore
they are downloaded from the origin site.

This all means that the users of the FADA, as well as the users of
service proxies must perform two steps before attempting a
successful completion of downloadable code execution:

– (Optional) Set up a security manager. The Java API provides a
suitable one in the form of the class java.rmi.RMISecurityManager.
NOTE: Since FADA (in its version 5.0.0 and above) uses
net.fada.directory.SignedMarshalledObject as replacement of
java.rmi.MarshalledObjectd it is not needed to set explicitly the
security manager, because the default security manager is used
instead of.

– Provide a policy file. This policy file should contain the minimum
set of permissions necessary for the execution of the downloaded
code.

The policy file description can be found at:

http://java.sun.com/products/jdk/1.2/docs/guide/security/PolicyFil
es.html

The Java policy tool (policytool) can be used to easily create a policy
file.

M.Vidal, J. Sánchez, J. Aparicio 93

CORE FADA - Code Examples

To provide a policy file to a Java class, two methods can be used:

– Set the property java.security.policy at the command line, like this:
java -Djava.security.policy=<policy file>

– Explicitly set the property from within the Java class, like this:
System.setProperty(“java.security.policy”, “<policy file>”);

The server side execution requires an additional property to be set:
the codebase annotation. The codebase annotation is the url that is
stuck to every instance of MarshalledObject that is created within a
JVM. This url must be a meaningful url from the client’s point of view,
so the use of schemes like file:// is forbidden unless it is known for
sure that the client will find the classes at the specified path of its
own file system. The preferred way to publish class files is through
an HTTP server, although the same restrictions about public
availability apply.

For instance, if the server is in a network that provides an HTTP
server that is accessible to its clients as http://mynet.mydomain.com,
and the virtual HTTP server path /classes points to a directory where
the jar file containing the classes for the server proxy can be found, a
valid codebase annotation would be
http://mynet.mydomain.com/classes/serviceProxy.jar. Be specially
careful with urls that contain localhost, 127.0.0.1 or otherwise any
private IP numbers. If they are used as a codebase annotation the
MarshalledObjects won’t be usable outside the scope where these
urls are valid.

To set the code base annotation the same mechanisms as for the
policy file apply. That is, there are mainly two ways to set the
codebase annotation:

– Set the property java.security.policy at the command line, like this:
java -Djava.rmi.server.codebase=<url annotation>

– Explicitly set the property from within the Java class, like this:

System.setProperty(

“java.rmi.server.codebase”,

“<url annotation>”

);

A word of advice: the setting of any Java property must be done
BEFORE setting the security manager. The security manager forbids

M.Vidal, J. Sánchez, J. Aparicio 94

CORE FADA - Code Examples

the setting of any Java property unless explicitly allowed by the
policy file.

As a deployment and execution example, the server class will run on
a host called myhost.mynetwork.com, in port 9999. The service proxy
classes will be stored in a jar file called printer-dl.jar, which will be
accessible by http in the directory classes of the http server at
http://mywebserver.anothernetwork.com, in port 8000. The location
of the client is indifferent, as long as it can access the
aforementioned web server and the FADA network.

The invocation of the server class, provided the code above is used,
is:

java -Djava.security.policy=./policy.file

-Djava.rmi.server.codebase=

http://mywebserver.anothernetwork.com:8000/classes/printer-

dl.jar

-classpath .:fada-toolkit.jar Printer 9999 myhost.mynetwork.com

fada.fadanet.org:2002

The Java properties are set in the command line, and therefore take
effect before the security manager is instantiated and set. The policy
file property points to a file in the local directory that is called
policy.file, and contains the policies needed to execute code related
to the FADA. A description of such file is given in the chapter [FADA
security wrappers].

Then comes the codebase annotation. The codebase annotation, as
mentioned above, is:

 http://mywebserver.anothernetwork.com:8000/classes/printer-
dl.jar.

 Note that it does not end in a slash, as the codebase is referring to
an actual file (the file printer-dl.jar) and not a directory.

The next parameter is the classpath. Note that it needs both the
actual directory, where the classes Printer and PrinterProxy are, as
well as the fada-toolkit.jar file, where the FadaHelper,
FadaLeaseRenewer and related classes and interfaces are.

Then the class name is given for invocation. The rest of the line are
the parameters to the server class. In this example, first comes the

M.Vidal, J. Sánchez, J. Aparicio 95

CORE FADA - Code Examples

port number (9999), then the host where the server is
(myhost.mynetwork.com), and then the url of a known FADA node.

Note that the host name is myhost.mynetwork.com, and that things
such as localhost, 127.0.0.1, 192.168.0.1, which are private network
designations, and the like won’t work unless the client is also in the
same host as the server, which makes the whole business of creating
a distributed application pretty pointless.

The client can be invoked by using the following command line:

java -Djava.security.policy=./policy.file

-classpath .:fada-toolkit.jar PrinterClient myfile.txt

fada.fadanet.org:2002

First note that the client doesn’t express a codebase annotation. The
client requires none, because in this example the client is not
exporting any class. However, the policy file is needed because the
client is USING downloadable code.

Then the classpath is specified. As above, the actual directory is
used, provided that the ProxyClient class resides there. The
RemotePrinter interface is also needed in the classpath, because that
class is not downloaded, but rather used directly in the client code.
This is common to all FADA applications: the interface is used directly
in code and therefore is needed for both compilation and execution.

After the name of the class to invoke there are two parameters. The
first one is the name of the file to print. In this simple example it has
been assumed that the remote server is able to print only text files,
and so only text files must be sent by using this client application.

The second parameter is the url of a known FADA node. Note that it
is not the same as the url for the FADA node provided in the server
side. In spite of that, the client will find the proxy for the desired
service if there exists a path between the FADA node whose url is
fada.fadanet.org:2002 and the FADA node whose url is
fada.fadanet.org. Don’t be misled by the fact that both FADA nodes
belong to the same domain. The existence of a path between two
given FADA nodes depends on the existence of neighbor FADA nodes
that are connected to both of them, and there is a path through the
neighborhood of FADA nodes between the two.

M.Vidal, J. Sánchez, J. Aparicio 96

CORE FADA - Code Examples

In this simple example the remote method does not return anything,
so there is no way to get confirmation or denial from the server side.
However, this is of little interest as this example relates to the FADA
architecture and its software toolkit, and therefore has intentionally
been left out of this document.

M.Vidal, J. Sánchez, J. Aparicio 97

CORE FADA - The FADA stub - skeleton compiler: an example

The FADA stub - skeleton compiler: an
example

Easier development of the server: use of fadagen
The previous section dealt with the generic use of the FADA to

provide a client-server application to be deployed using the FADA.
The service proxy was explicitly created, and thus it was shown the
flexibility achievable with the use of proxies. The service proxy had
plenty of flexibility about what protocol to use to communicate with
the server side, and the server side had plenty of flexibility about
how to implement the service. In fact, in the example the details of
how to print the file were left out intentionally. One possible solution
would be to use the Java Native Interface (JNI) to make the server
class, written in Java, to interact with some function written in C or
other language and stored in a library file (a DLL file in Windows
platforms, a .so file in UNIX environments). Another possible solution
would have been to directly interact with the print server from within
the Java application, by sending the bytes to a defined port, or writing
the file to a spooling directory, etc. All these details were hidden
from the client’s point of view.

A common way to develop distributed applications in Java is through
the use of RMI. But it has already been seen the problems it poses.
The FADA development team provided a partial replacement of the
RMI framework, and in this section such replacement will be further
explored.

The previous example will be modified to allow the use of the FADA
stub/skeleton compiler (fadagen). This modification requires changes
in the server side class, and also in the service proxy class, but NOT
on the client side. The abstraction layer provided by the use of a
service proxy effectively isolates the client from the server side
implementation details. That’s exactly what allows clients of Jini in
general, and FADA in particular, to use the same client code for
different server implementations.

As the section about the FADA stub/skeleton compiler explains, the
server class must implement the net.fada.remote.Remote interface,
and all remote methods must be accordingly tagged by stating that
they throw the net.fada.remote.RemoteException exception in their
throws clause. A new interface will be declared.

M.Vidal, J. Sánchez, J. Aparicio 98

CORE FADA - The FADA stub - skeleton compiler: an example

The new interface is:

import java.io.*;

import net.fada.remote.*;

public interface RemotePrinterWithStub extends

net.fada.remote.Remote {

public void print(byte[] contents)

throws IOException, net.fada.remote.RemoteException;

}

The interface now extends the interface net.fada.remote.Remote. By
making this change it will be possible to run the fadagen utility on the
server side class, when it has been changed. The print method now
throws net.fada.remote.RemoteException as well as
java.io.IOException. This is to make the fadagen utility aware that
code to make this method remote must be provided.

import java.net.*;

import java.io.*;

import net.fada.toolkit.*;

import net.fada.directory.tool.*;

import net.fada.remote.*;

import net.fada.transport.*;

public class Printer

extends RemoteObject

implements RemotePrinterWithStub {

int portNumber;

ServerSocket serverSocket;

Thread runner;

public Printer(int portNumber) throws IOException {

this.portNumber = portNumber;

this.serverSocket = new ServerSocket(portNumber);

}

public void print(byte[] contents)

throws IOException, RemoteException {

M.Vidal, J. Sánchez, J. Aparicio 99

CORE FADA - The FADA stub - skeleton compiler: an example

// Implementation details of the print method

// have been intentionally left out of the example

}

public static void main(String[] args) throws Exception

// Get parameters

// First parameter is the port number

int portNumber = Integer.parseInt(args[0]);

// Second parameter is the server host name, needed for the

proxy

String url = args[1];

// Third parameter is the url of the FADA node

// Discovery mechanisms could be used here

String fadaUrl = args[2];

// Create the instance of the server

Printer me = new Printer(portNumber);

// Prepare to create instance of the stub

ServerTransport st = new ServerTransportImpl(portNumber);

ClientTransport ct = new ClientTransportImpl(url);

// Create the stub instance

RemotePrinter stub = (RemotePrinter) me.export(st, ct);

// Register the stub in the FADA

// Prepare lease renewer

FadaLeaseRenewer flr = new FadaLeaseRenewer();

M.Vidal, J. Sánchez, J. Aparicio 100

CORE FADA - The FADA stub - skeleton compiler: an example

// Prepare the FadaHelper instance

FadaHelper fh = new FadaHelper(flr);

// Register the service proxy in a FADA node

FadaServiceID id = null;

FadaLookupLocator locator = new FadaLookupLocator(fadaURL);

id = fh.register(

locator.getRegistrar(),

(Serializable)stub,

null,

 new String[] {PrinterProxyOnlyStub},

 10000L,

 null,

 “http://server:port/where_codebase_is.jar”,

 null);

}

}

Note that, as in the previous example, the implementation details
about the actual printing of the file are not specified.

The server class must extend the class net.fada.remote.RemoteObject
, because this class offers the export method. This method takes an
instance of two classes, which are implementations of the interfaces
ServerTransport and ClientTransport. The FADA software bundle
offers a default implementation for each interface, using HTTP as the
transport layer. The implementation of the transport layer is open,
and can be freely modified by providing a different implementation of
the ServerTransport and ClientTransport interfaces.

The other reason why the server must extend a predefined class is
that the class net.fada.remote.RemoteObject has the needed
functionality to provide a concurrent server of remote requests. Note
how all the code involved in the control of separate requests has
been eliminated from the server class, leaving a much clearer
implementation, only concerned with the business logic.

It must be noted that this is a long-lived service, and therefore it
doesn’t deregister itself from the FADA, but rather continues
execution undefinitely. A real service should offer some mechanism

M.Vidal, J. Sánchez, J. Aparicio 101

CORE FADA - The FADA stub - skeleton compiler: an example

for the administrator to take it down (for administration tasks,
migration to another platform, whatever).

The client code is exactly the same, save by two details:

– The client code uses the FadaHelper to look in the FADA for a
different interface, this time being RemotePrinterWithStub.

– This interface has a different signature for the method print, and
therefore the client is required to provide proper parameters,
otherwise it can’t be called.

This approach has definitely exposed some implementation details to
the client, hardly a desirable situation. An alternative and better
approach would be to use a mixture of the approaches above. That
is, to provide a service proxy that uses the stub obtained on the
exportation of the net.fada.remote.RemoteObject. In this way, if an
implementation detail changes, it is only needed to change the code
for the service proxy, and not the interface and the client as well.
Also, by keeping the stub and skeleton provided by the fadagen
application, it is possible to program servers in an easy way, without
the need to deal with concurrent server issues.

As the skeleton and stub use by default a transport layer that’s based
on HTTP, it is easy to deploy such an application with clients behind
firewalls, because if on such environment there is a gateway or proxy
server that allows the crossing of HTTP messages across the firewall
boundaries, it is possible to provide the complex functionality of a
full-fledged server without the need to open extra ports on the
firewall, which makes the administration of the networking
environment easier.

Skeleton/stub and proxies
In the previous example the service interface had to be changed to

allow the use of the fadagen utility. This forced the change of the
client code, an undesirable side effect. In this section another
approach will be used, taking the best of both worlds: easy server
class with the use of fadagen, and an unaware client with the use of
the service proxy.

The service interface defines what the client may or may not know
about the service. It is the only piece of code the client has actually
to know in order to use the service proxy. Unfortunately, service
interfaces for use in FADA are not aware of the existence of fadagen
(the fadagen utility saw the light long after the FADA was used in

M.Vidal, J. Sánchez, J. Aparicio 102

CORE FADA - The FADA stub - skeleton compiler: an example

testing environments). Therefore these service interfaces are not
well suited for use with the fadagen utility.

But there is one thing that can be done to use both the service proxy
that implements the service interface and to use the fadagen utility
to easier develop the server side class: to write a service proxy that
uses the stub generated by the fadagen utility.

The role of the service proxy is to provide a bridge between the
service interface (known to the client) and the server
implementation. Therefore the natural way to isolate the changes
caused by the use of the fadagen utility, is to write a service proxy
that implements the service interface, therefore effectively isolating
the client from server implementation details.

The new service proxy would be like this:

import java.io.*;

import java.net.*;

public class PrinterProxy implements RemotePrinter, Serializable

{

RemotePrinterWithStub stub;

public PrinterProxy() {

// For serialization purposes

}

public PrinterProxy(RemotePrinterWithStub stub) {

this.stub = stub;

}

public void print(File file) throws IOException {

// Prepare to read the file

FileInputStream fis = new FileInputStream(file);

// Read the file

byte[] chunk = new byte[1024];

ByteArrayOutputStream baos = new ByteArrayOutputStream();

int read = -1;

while((read = fis.read(chunk)) != -1) {

M.Vidal, J. Sánchez, J. Aparicio 103

CORE FADA - The FADA stub - skeleton compiler: an example

baos.write(chunk, 0, read);

}

// Call the server

try {

stub.print(baos.toByteArray());

} catch(Exception ex) {

throw (IOException) new IOException(

ex.getMessage()

).fillInStackTrace();

}

fis.close();

baos.close();

s.close();

}

}

The print method is now compliant with the service interface, and
therefore the change in the server is invisible to the service client.
The operation of reading the file is now performed by the service
proxy, and not by the client as was the result of using the server
stub. That is exactly the role of the service proxy: to perform the
small set of operations that may be needed in order to adequate
parameters known to the client to parameters usable by the server
side, and to transform result from the server side to results suitable
to the client side. In this case the server returns no results, and
therefore the service proxy hasn’t to do anything about it.

The service proxy also isolates the client from the exceptions thrown
by the server stub that are not declared in the service interface. If
such an exception is thrown by the stub, it is caught by the service
proxy and wrapped within an exception the client is aware of. The
client is protected from implementation-specific exceptions.

The service proxy must be created and registered by the server side,
and therefore the server code must be changed yet once again. Here
is how it looks:

import java.net.*;

import java.io.*;

M.Vidal, J. Sánchez, J. Aparicio 104

CORE FADA - The FADA stub - skeleton compiler: an example

import net.fada.toolkit.*;

import net.fada.directory.tool.*;

import net.fada.remote.*;

import net.fada.transport.*;

public class Printer

extends RemoteObject

implements RemotePrinterWithStub {

int portNumber;

ServerSocket serverSocket;

Thread runner;

public Printer(int portNumber) throws IOException {

this.portNumber = portNumber;

this.serverSocket = new ServerSocket(portNumber);

}

public void print(byte[] contents)

throws IOException, RemoteException {

// Implementation details of the print method

// have been intentionally left out of the example

}

public static void main(String[] args) throws Exception {

// Get parameters

// First parameter is the port number

int portNumber = Integer.parseInt(args[0]);

// Second parameter is the server host name, needed for the

proxy

String url = args[1];

// Third parameter is the url of the FADA node

// Discovery mechanisms could be used here

M.Vidal, J. Sánchez, J. Aparicio 105

CORE FADA - The FADA stub - skeleton compiler: an example

String fadaUrl = args[2];

// Create the instance of the server

Printer me = new Printer(portNumber);

// Prepare to create instance of the stub

ServerTransport st = new ServerTransportImpl(portNumber);

ClientTransport ct = new ClientTransportImpl(url);

// Create the stub instance

RemotePrinterWithStub stub =

(RemotePrinterWithStub) me.export(st, ct);

// Create the service proxy

RemotePrinter proxy = new PrinterProxy(stub);

// Register the service proxy in the FADA

// Prepare lease renewer

FadaLeaseRenewer flr = new FadaLeaseRenewer();

// Prepare the FadaHelper instance

FadaHelper fh = new FadaHelper(flr);

// Register the service proxy in a FADA node

FadaServiceID id = null;

FadaLookupLocator locator = new FadaLookupLocator(fadaUrl);

id = fh.register(

locator.getRegistrar(),

proxy,

null,

 new String[] {PrinterProxySmartStub},

 10000L,

M.Vidal, J. Sánchez, J. Aparicio 106

CORE FADA - The FADA stub - skeleton compiler: an example

 null,

 “http://server:port/where_codebase_is.jar”,

 null);

}

}

Notice how the interfaces implemented by the server class and the
service proxy are not the same. This is quite straightforward, since
the client should know nothing about the implementation details of
the server class, and therefore it is irrelevant if the server side class
implements or not the service interface. In fact, the server side
needn’t be a Java class, as long as there is a way to register a service
proxy from without a Java class, and, more important yet, to
continually renew the lease from within a non-Java executable.

The use of JNI could make this possible, but that is left to the
developers of the server side software if they wish so. The use of JNI
requires a per-platform development and compilation of bridges
between the native platform in use and the FADA class methods, plus
the creation of shared libraries for each platform, and therefore it is
not possible to provide an API with JNI methods for all platforms.
Moreover, the execution of such shared library objects is platform
dependent, and therfore it is not possible to provide a general
implementation. Server side developers may develop a JNI wrapper
for the FADA toolkit classes and methods, in the best way that is suits
their platform environment.

As for the use of JNI for the client side, it is not possible to provide a
service proxy that uses JNI (or that can be used through JNI) for all
possible client platforms. This is exactly the reverse scenario from
the paragraph above, and it’s much more complex to deal with. The
server side has a fixed platform, so the use of JNI could be
theoretically used. But when it comes to the client side, it is the
service provider that must develop the service proxy. If the service
proxy uses the JNI for the client environment the service proxy must
be able to cope with all client platforms, a situation that it’s not
possible to cope.

The client side code for the latest example is the same as in the first
case, because that is exactly the scenario: a service proxy that
implements the service interface. The example where the client uses
directly the stub is not recommended unless the service interface can
be readily used as an interface for the fadagen utility.

M.Vidal, J. Sánchez, J. Aparicio 107

CORE FADA - The FADA stub - skeleton compiler: an example

M.Vidal, J. Sánchez, J. Aparicio 108

CORE FADA - FADA security wrappers

FADA security wrappers

Distributed computing is fundamentally different from centralised
computing. The usually mentioned four major differences include
latency, memory access, partial failures, and concurrency. Security
should definitely be added to this list, since a distributed system
requires cryptography to be used while a centralised system may
survive without it.

Since the creation of computer networks, security has been an
important concept within these systems. The need for having
different and disparate systems interconnected forces us to put a
great effort to protect the use of shared distributed resources of
malicious intentions.

In reality, computer networks are insecure, and some security
features are desired. For example, the service may wish to
authenticate clients, and based on who the client is, allow some
operations and deny others. In distributed systems, this functionality
is achieved using cryptographic protocols. For example, the
Transport Layer Security (TLS) protocol supports authentication of
both the client and the server using public keys and X.509
certificates.

The security mechanism in FADA is strongly associated with the use
of certificates. In fact, strongly associated with the use of X509
certificates, which are mainly supported by the JAVA standard API and
used worldwide. The use of this type of certificate is due to the use of
a PKI cryptographic system in the signatures of all objects that are
moving inside the FADA network.

In this paper, the concept of FADA federations is explained around
FADA security. We will see the meaning of the phrase “We only trust
in those entities whose are certified by the same entities in which we
trust”.

M.Vidal, J. Sánchez, J. Aparicio 109

CORE FADA - Security background

Security background

In this chapter, firstly, it is given an overview of relevant concepts
and technologies from the field of computer security. The rest of the
chapter describes existing Java technologies, including the Java 2
security architecture.

Computer Security

Computer security deals with the prevention and detection of
unauthorized actions by users of a computer system. Usually, this
includes at least the protection of confidentiality, integrity, and
availability. Sometimes accountability, and even dependability, are
also added to this list. In actual systems, the protection of these
properties are achieved through various security services and
mechanisms. From the point of view of this document, the most
important services are authentication, authorization, and access
control. In this work, authentication means verifying a claimed
identity. Authorization means granting access to a restricted resource
to someone, and access control mechanisms enforce these
restrictions. In distributed systems, these functions are usually
supported by various cryptographic primitives and protocols.

Decentralized trust management

Traditionally, access control has been based on identity
authentication and locally stored access control lists (ACLs). The most
popular method for identity authentication is probably user names
and passwords. Another widely used method is to rely on public keys
with identity certificates. Basically, identity certificates, such as
X.509, bind a human-readable name to a public key. It is important to
notice that these certificates are fundamentally different from
authorization certificates, described below.

Access control lists describe what access rights a user has for a
resource. For instance, an entry in a list can grant Alice a read
permission to some file. However, when applied to a distributed
system, the ACL approach has a number of drawbacks. For instance,
operations which modify the access control list need to be protected

M.Vidal, J. Sánchez, J. Aparicio 110

CORE FADA - Security background

somehow. To illustrate this issue, the following example is given by
Ellison et al.

“... Imagine a firewall proxy permitting telnet and ftp access from the
Internet into a network of US DoD machines. Because of the sensitivity of
that destination network, strong access control would be desired. One
could use public key authentication and public key certificates to establish
who the individual keyholder was. Both the private key and the keyholder
s certificates could be kept on a Fortezza card. That card holds X.509v1
certificates, so all that can be established is the name of the keyholder. It
is then the job of the firewall to keep an ACL, listing named keyholders
and the forms of access they are each permitted.

Consider the ACL itself. Not only would it be potentially huge,
demanding far more storage than the firewall would otherwise require,
but it would also need its own ACL. One could not, for example, have
someone in the Army have the power to decide whether someone in the
Navy got access. In fact, the ACL would probably need not one level of its
own ACL, but a nested set of ACLs, eventually reflecting the organization
structure of the entire Defense Department.”

Indeed, Blaze et al. argue that “the use of identity-based public-key
systems in conjunction with ACLs are inadequate solutions to distributed
(and programmable) system security problems”.

Trust management, introduced by Blaze et al., proposes an alternative
solution. Basically, trust management uses a set of unified mechanisms
for specifying both security policies and security credentials. The
credentials are signed statements (certificates) about what principals
(users) are allowed to do. Thus, even though they are commonly called
certificates, they are fundamentally different from traditional name
certificates. Usually the access rights are granted directly to the public
keys of users, and therefore trust management systems are sometimes
called key-oriented PKIs.

The unified mechanisms are also designed to separate the mechanism
from the policy. Thus, the same mechanisms for verifying credentials and
policies (a trust management engine) can be used by many different
applications. This is unlike access control lists whose structure usually
reflects the needs of one particular application.

Java Security Architecture

M.Vidal, J. Sánchez, J. Aparicio 111

CORE FADA - Security background

The FADA architecture relies heavily on the security features in the
base Java technology. Security was one of the main goals in the
design of the Java language and execution environment. The security
features were originally designed for applets that is, small
applications embedded inside web pages but have since then
received numerous other uses. When running inside a web browser,
an applet should not be allowed to access sensitive resources, such
as the user s files, or open arbitrary network connections, for
instance. The security architecture of Java 2 consists of the following
components.

• Java language and platform: type safety and isolation.

• Resource access control: policy and enforcement.

• Cryptography architecture.

The Java language and platform security are described in the next
section, and resource access control in later section. The third
important component is the cryptography architecture. It provides
access to cryptographic algorithms, such as message digests, digital
signatures, symmetric and asymmetric ciphers and key agreement
algorithms. It is used as a building block in the construction of the
other security mechanisms.

Java language and platform security

The Java language is designed to be type safe. This means, for
instance, that no Java program can ever refer to an object using an
incorrect type, refer to an unassigned memory location, or forge
pointers from integer types. Also, access restrictions (private, public,
package local) on classes, methods, and fields cannot be violated.
Some of these type checks are performed by the compiler, but Java is
usually compiled into an intermediate platform-neutral form called
byte code. This intermediate form is interpreted by a Java Virtual
Machine (JVM). The actual checks must be performed on the byte
code, since it is possible to bypass the compiler and write byte code
by hand. In the JVM, type safety is implemented using runtime checks
(for example, type casts) and the byte code verifier. The byte code
verifier checks the code when it is loaded, and ensures that it
respects the Java language rules. The byte code verifier is a very
complex piece of code, and most of the security bugs found in Java

M.Vidal, J. Sánchez, J. Aparicio 112

CORE FADA - Security background

implementations so far have been in the byte code verifier. In
addition to type safety, untrusted code needs to be isolated. In Java,
the isolation is provided by class loaders. Class loaders are
responsible for mapping class names (e.g., java.lang.String) to the
corresponding byte code, and loading the byte code from a file or
from the network. The mapping is context-dependent: there can be
two classes with the same name running inside a single JVM, provided
that they are loaded with different class loaders. The class loaders
are themselves written in Java, and programmers can write new class
loaders, if necessary. Class loaders also interact with type safety.
Because there can be more than one class with the same name,
references to names must be resolved consistently, i.e., in a way
which preserves type safety.

Resource access control

The resource access control framework is responsible for controlling
access to valuable system resources, such as the file system. This
part of the infrastructure has considerably evolved during the history
of Java: both the enforcement and policy mechanisms are now more
flexible and fine-grained than in the original Java 1.0. In JDK 1.0 and
1.1, all code was either untrusted or completely trusted. Untrusted
code was run side a sandbox, which limited its access to sensitive
operations. In JDK 1.0, all code loaded from the local file system was
considered trusted, and everything else (e.g. loaded from the
network) untrusted. However, sometimes applets have a legitimate
need to access some protected resources. Thus, JDK 1.1 introduced
the notion signed applets. In Java the byte code for an application is
usually stored in a Java archive (JAR) file. The JAR file can also include
a digital signature. If the JAR file was signed by a trusted key, the
code was considered trusted, even if the JAR file itself was loaded
from the network.

JDK 1.1 model (sandbox) and JDK 1.2 protection domains compared. In JDK 1.1 the
code is either in the sandbox or trusted. In Java 2 the code is divided into different
protection domains.

M.Vidal, J. Sánchez, J. Aparicio 113

CORE FADA - Security background

In Java 2 (JDK 1.2 or greater) the security architecture was almost
completely redesigned. Code is no longer treated simply untrusted or
completely trusted, but is divided into protection domains. All the
code running inside one protection domain share the same access
permissions, but there can be as many protection domains as
necessary. Classes are assigned to protection domains based on the
URL and digital signatures of the JAR file. The permissions granted to
protection domains are also more fine-grained than in JDK 1.1. For
instance, it is possible to grant a permission to read only a particular
file, or open a network connection to a single port on a single host.
The set of permissions is not fixed but can be extended by
programmers to protect application-specific resources. When
checking permissions, the access control mechanisms check the Java
call stack. The effective permissions are the intersection of the
permission of all the classes in the call stack, from the topmost to the
first privileged stack frame, or the whole stack if none of the frames
is marked as privileged. Privileged frames allow a piece of code to
perform some operation with its own privileges, regardless of who
originally called it.

M.Vidal, J. Sánchez, J. Aparicio 114

CORE FADA - Requirements for FADA Security

Requirements for FADA Security

Before designing a security framework for FADA, it is necessary to
decide what kind of security functionality is required. Naturally, this
depends on the concrete applications written using FADA and on the
trust relationships involved. We can differentiate two scenarios in the
FADA architecture:

• Interaction between FADA nodes.

• Interaction between users of FADA network (Service providers and
service users) with FADA nodes.

Security frameworks of both scenarios are different because the
security functionality in each scenario is not the same.

In the real use of applications inside the FADA network there is
another scenario, the interaction between service users with service
providers, but this scenario is not inside the scope of security
framework of FADA, but is a task of the service provider to give this
framework for a correct and secure use of their services.

FADA network security functionality

The requirements for FADA network security functionality are the
following:

• A FADA node must be able to avoid interaction with other FADA
nodes that aren't nodes of its federation. These interactions may be a
service lookup extension, a request for connection, and so on.

• A FADA node is not the responsible of discarding malicious service
proxies stored within them. The service user is the last chain link
when it is made a lookup for a service proxy. It must have the option
of discarding the service proxies in which it does not trust.

• A FADA node can belong to different federations, as long as these
federations are in the same hierarchy of federations. In terms of
security, a FADA node can belong to all federations which trust in its

M.Vidal, J. Sánchez, J. Aparicio 115

CORE FADA - Requirements for FADA Security

certificate. In the next chapter the concept of federations is explained
more in detail.

• The FADA network is an heterogeneous entity, so each node present
in the FADA network takes care of its own security, without assuming
any rule applied with itself or with other nodes.

• Each FADA node is free to be implemented within its own mechanism
of security, which is represented in its FadaProxy. The only restriction
is that the FadaProxy methods must fulfill the semantic of the
FadaInterface.

• A Fada node can deny the use of its functionality to non-trusted
users. The verification and authentication of these users may be
internally managed by the FadaProxy and must be transparent to the
user.

FADA's users security functionality

The users of FADA, like service providers and service users, interact
with the FADA network to register services or to retrieve services to
be used by them. To achieve this, they must fulfill some requirements
to guarantee the correct accomplishment of FADA security rules.

The requirements are explained in the following lines:

• The service providers can only register their service proxies in any
FADA node federation that trust in its certificate. Otherwise, the
registration may not be completed successfully because this action is
rejected by FADA node side.

• The service provider may discard untrusted Fada proxies when
registration is attempted.

• The service user may discard untrusted service proxies obtained
during a lookup action. This entity is the last link chain when it is
made a lookup for a service proxy, and so, this entity must have the
possibility of discarding service proxies that are not signed by the
certificate in which this entity trusts.

M.Vidal, J. Sánchez, J. Aparicio 116

CORE FADA - FADA and Federations

FADA and Federations

The concept of federation is very simple: several entities that work
together to perform a particular functionality. It is possible to extend
the meaning of this concept, if the particular functionality must be
made by a selected group of entities that have a particular
relationship.

A FADA federation is a group of FADA nodes that trust one another.
This trust can be described as a trust relationship.

Trust relationships are based in the trust of certificates. So, the
federations are created according to the existence of hierarchies of
certificates. This hierarchies can be seen as certificate chains which
go from the root certifier authority (last certifier entity, which certifies
other entities using a self-signed certificate) to target entity (first
entity in the chain).

The following graphic illustrates the existence of different federations
of FADA nodes and which are the trust relationships among them.

Trust relationships diagram

M.Vidal, J. Sánchez, J. Aparicio 117

Federation A

Federation D

Federation B

Federation C

CORE FADA - FADA and Federations

In this diagram we can see a sample scenario with different
federations. The rules for a federation's creation is related with the
use of certificates signed by certifier authorities (CA's) by the FADA
nodes.

For each certifier entity that certifies a FADA node (or some of them)
a federation is potentially created. This certifier entities may be root
certifier authorities (which have a self-signed certificate for certifying)
or intermediate certifier authorities (which have a certificate signed
by another certifier authority for certifying).

In the above diagram the Federation A is formed by FADA nodes that
use certificates signed by a root CA. On the other hand, the
Federation B is formed by FADA nodes that uses certificates signed
by an intermediate CA (this CA is certified by the root CA cited
previously).

A FADA node can belong to different federations according to the
certificates in which it trusts. In the diagram the FADA nodes that are
into a circle intersection belong to different federations. This means
these FADA nodes trust in the certificates associated to both
federations.

Trust relationships between FADA nodes exist if the followings cases
are given:

• A FADA node in federation X trusts all FADA nodes belonging to this
federation X.

• A FADA node in federation X may trust FADA nodes belonging to
another federation Y if and only if FADA nodes in federation Y trust
the certificate associated to federation X.

M.Vidal, J. Sánchez, J. Aparicio 118

CORE FADA - Dynamic and secure loading of remote code in
FADA

Dynamic and secure loading of remote code
in FADA

When the security wrapper was planned for the FADA, different
mechanisms were proposed to provide a trustworthy security that
were as much transparent to the user as possible.

The more crucial part, in terms of security, in a distributed system is,
without a doubt, the execution of remote code in the local JVM. For
this, the security mechanism has been designed around this point.
The security mechanism is totally integrated in the side which is in
charge of download and execution of the remote code. The low level
nature of this mechanism allows high security and remains
transparent to the user.

SignedMarshalledObject

While RMI provides the java.rmi.MarshalledObject class that makes
possible all mechanisms of downloading remote code and its
following load and instantiation of this remote code in the local JVM,
for communications in FADA a new class
net.fada.directory.SignedMarshalledObject has been created. This
class inherits the concepts and mechanisms used in the RMI class,
but new functionality has been added that allows to outfit a secure
nature to the load and execution of remote code in the local
machine.

SignedMarshalledObject's structure

The SignedMarshalledObject's structure is defined in the next
graphic:

M.Vidal, J. Sánchez, J. Aparicio 119

CORE FADA - Dynamic and secure loading of remote code in
FADA

SignedMarshalledObject object structure

Like the annotation field in the java.rmi.MarshalledObject, the
annotation field in the SignedMarshalledObject also specifies the
possible locations of resources (classes) that allows the correct
deserialization of the object which is serialized inside of
SignedMarshalledObject. However, in the case of the
SignedMarshalledObject, only jar files can be the annotation, because
they can be signed, and obviously, directories can not.

The class loader is the main part of this object, which is in charge of
loading the marshaled object into the local JVM. This customized class
loader is responsible for checking all security rules which have to
apply before the load of the remote object into the JVM.

The signature is the encrypted digest made of the bytes of the
serialized object. Within the verification of this signature it is possible
to ensure the authenticity and integrity of bytes of the object
serialized into the SignedMarshalledObject. This field is an instance of
the class java.security.Signature, present in the standard JAVA API.
Besides, this object contains a byte array (which gives the name of
signature), and it is also in charge of verifying the cited signature.

The certificates field is the certificate chain that authenticates this
object and allows the verification of the previous signature.

M.Vidal, J. Sánchez, J. Aparicio 120

SignedMarshalledObject

Serialized Object

Certificates

Secure class loader

Resource annotations

Signature

CORE FADA - Dynamic and secure loading of remote code in
FADA

Finally, the last field is the serialized object, as an array of bytes.

There are parts of the SignedMarshalledObject that have been
intentionality omitted in its structure description because their
functionality is very specific, like the object's deserialization or
caching of jar files, which have not direct impact in the application of
security rules.

Step by step: Secure instantiation of a remote object in
FADA

The next paragraphs explain in detail how the instantiation of a
remote object is made in FADA, giving more details in implicated
parts that have reference to the security.

The steps to follow in the instantiation of a remote object in FADA
are:

 1 Unmarshaling the object.

 1.1 Signature (of the serialized object's bytes) verification.

 1.2 Deserialization and load of the object

 1.2.1 Downloading of needed classes for the instantiation of the
serialized object.

 1.2.2 Downloaded code verification.

 1 Unmarshaling the object.

The marshaled object may be obtained in differents ways, according
to the scenario in which we are involved, specifying more, according
to the object that would like to be obtained. There are two types of
objects which are marshaled in FADA. One of these is the object that
takes over the communication with a FADA node (FadaProxy), and
the other type are the service proxies. To retrieve a FadaProxy an
HTTP request is made through TCP connection to the node which

M.Vidal, J. Sánchez, J. Aparicio 121

CORE FADA - Dynamic and secure loading of remote code in
FADA

we'd like to communicate with. This FADA node returns in the same
communication channel its FadaProxy marshalled as array of bytes.
On the other hand, the achievement of a service proxy is always
made by a FadaProxy, and so, the way to obtain this service proxy
depends on the implementation of the FadaProxy we are using to
make this action.

The methods for unmarshaling an object are the following:

• public Object SignedMarshalledObject.get();

• public Object SignedMarshalledObject.get(Certificate

certificate);

Both return an object java.lang.Object. This makes necessary a later
casting to the correct object type. As we can see, the get() method
is overloaded, because there is the possibility of unmarshaling the
object applying or not the security rules. If a certificate is passed in to
the method, the security rules will be applied. But if no certificate is
passed in or a null object is passed in to the method the security
rules will not be applied.

From now on, it is supposed that a valid certificate has been passed
in to the method get to unmarshal the object.

 1.1 Signature (of the serialized object's bytes) verification.

When the marshaled object has been obtained, the first thing that
must be done is to check if the certificate passed is contained in the
certificate chain embedded in the marshalled object, and if the
certificate chain is well-formed. If any of these verifications fail, the
unmarshalling will be stopped and a exception will be thrown
signaling that it is doesn't trust the marshalled object.

In this point the integrity of contents of the serialized must be
checked. To do that, the signature embedded in the
SignedMarshalledObject is verified. This signature must have been
created from the bytes of the serialized object. To verify this
signature, it must be passed in to the signature verifier (the signature
object itself) the public key contained in the first certificate of the
certificate chain embedded in the marshaled object. If the
verification fails, it is no able to authenticate the serialized object,
and so, the deserialitation will be stopped and an exception will be
thrown signaling this failure.

M.Vidal, J. Sánchez, J. Aparicio 122

CORE FADA - Dynamic and secure loading of remote code in
FADA

 1.2 Deserialization and load of the object

If the integrity and authentication of bytes of the serialized object has
been verified, the next step is the deserialization of this object.
During this deserialization it will be necessary the definition and load
of some classes needed for cited deserialitation. As a minimum, the
class of the serialized object will be defined and load, as well as some
classes which are referenced in this class. Here the customized class
loader enters the picture. It attempts to find the class bytes to define
all classes needed to complete the deserialitation of the serialized
object, as the class this object belongs to and all the related classes
may have not been loaded to this JVM yet.

 1.2.1 Downloading needed classes for the instantiation of the
serialized object

When the class of the serialized object, as well as the classes
referenced by this class, are not found in local resources (classpath),
the customized class loader must take the annotations present in the
marshaled object to know where it must search the remote code that
defines the cited classes.

These annotations must be references to accessible URLs so the
customized class loader may download the files where the code that
defines the classes needed for deserializing the object embedded in
the marshaled object can be found. If any of the needed classes is
not found in any resource referenced in the annotations, the load will
stop the class loading of the serialized object and an exception will be
thrown signaling that a needed class for the definition of the
serialized object can not be found.

 1.2.2 Downloaded code verification.

To verify the downloaded code by the customized class loader it is
necessary that each class has an associated signature that signs it.
So it is possible to check, as it has been done with bytes of the
serialized object, its authenticity and its integrity. For this reason it
has been taken the design decision that the classes downloaded
must be stored in a jar file (java archive file). This jar file must be
signed with the same private key used to sign the bytes of the
serialized object. So, it is possible to authenticate that the source of
the instance and the code is the same entity, without any kind of
doubt.

For more details about signing jar files see [44].

M.Vidal, J. Sánchez, J. Aparicio 123

CORE FADA - Dynamic and secure loading of remote code in
FADA

If the jar file is corrupted or any signature inside the jar file can not
be verified the deserialization and the loading will be stopped and an
exception will be thrown signaling that trusted code for
deserialization of the marshalled object can not be found.

If all processes have been successfully completed, the object has
been finally unmarshaled and is returned by the method. It must
have in account that all marshalled objects should be
implementations of defined interfaces. These interfaces must be
present in the entity that would like to unmarshall implementations of
them, but the following casting can not be made with the returned
object until after unmarshalling the object.

A main goal, for the entities who would like that others use their
services proxies, is to do a good job where the interface of the proxy
has to be defined. This definition must be well written enough to
avoid later changes in case of adding new functionality to the proxy
(the class which implements the interface). If a new functionality
has to be added to the proxy but no changes have to be made to the
interface it means that a great job has been made in the definition of
the interface. We must remember that the implementation of the
interface is dynamically loaded every time the proxy has to be used
while the interface for this proxy is loaded one time during the life
time of the entity who needs to use the cited proxy.

SignedMarshalledObject instantiation

For someone to be able to use the services of other entities, these
entities must first create their proxies which will be acting as a
gateway between the provider entity (entity who provides the
service) and the target entity (entity who uses the service). But all
objects which move within the FADA network must be marshaled,
these service proxies should be marshaled before they can take part
inside the FADA network, and so, to be used by other entities
interested in these services.

For marshaling an object into a SignedMarshalledObject there are two
possibilities:

• SignedMarshalledObject smo =

new SignedMarshalledObject(Object objToMarshall);

M.Vidal, J. Sánchez, J. Aparicio 124

CORE FADA - Dynamic and secure loading of remote code in
FADA

With this first option no signing will be applied to the object. For this
reason, it will be only used by the entities which do not require the
use of secure proxies, it means, proxies to which the security rules
can not be applied.

SignedMarshalledObject smo =

new SignedMarshalledObject(

Object objToMarshall,

SecurityWrapper wrapper);

With this second option it will be possible to be potentially used by all
entities (entities which require secure proxies and entities which
don't have this security requirement).

Here a new kind of object enters the scene: the SecurityWrapper
object located in net.fada.directory.security package. This kind of
object is an object which is used as a container for two objects
needed for signing and verifying the proxy (exactly, bytes of the
serialized proxy).

SecurityWrapper object structure

This object can be created through the following constructors.

• public SecurityWrapper (PrivateKey key, Certificate[]

cerificateChain);

• public SecurityWrapper (PrivateKey key, Certificate[]

cerificateChain, boolean verify);

For the creation of this object the parameters passed in to the
constructor can not be null objects (in case of the second parameter,
the certificate array, it can not be empty). In case this rule is no
accomplished, the constructor will throw a NullPointerException
exception, and obviously, the object will not be created.

M.Vidal, J. Sánchez, J. Aparicio 125

SecurityWrapper

PrivateKey

Certificate Chain

CORE FADA - Dynamic and secure loading of remote code in
FADA

The parameters which must be passed in to the constructor are the
following:

• PrivateKey: It is the private key that will be used for signing the
serialized object into the SignedMarshalledObject. This key must be
the same with which the jar file that contains the class files (needed
for unmarshal the marshaled object) has been signed or will be
signed.

• CertificateChain: It is the certificate chain that will be used for
authentication and checking the proxy integrity when it is
dynamically loaded from the target entity. The certificate chain is a
sorted array of certificates, where the target certificate (it contains
the public key associated to the private key passed as first
parameter) is the first element in the array, and the root certificate
(certificate that certifies all previous certificates in the chain) is the
last element in the array.

Well-formed certificate chain (Array of certificates)

The third optional parameter which may be passed in to the
constructor allows to check if the certificate chain passed in is a well-

M.Vidal, J. Sánchez, J. Aparicio 126

210

Private Key A

Public Key A

KeyPair generated

Entity A (target)

Certificate C

SUBJECT: Entity C

ISSUER: Entity C

SUBJECT: Entity A

ISSUER: Entity B

Certificate A

Entity C (root CA)

SUBJECT: Entity B

ISSUER: Entity C

Certificate B

Entity B

SUBJECT: Entity A

ISSUER: Entity B

Certificate A

SUBJECT: Entity B

ISSUER: Entity C

Certificate B Certificate C

SUBJECT: Entity C

ISSUER: Entity C

CORE FADA - Dynamic and secure loading of remote code in
FADA

formed certificathe chain. If the boolean value passed is true, the
verification will be made, while if the boolean value is false this
verification will not be made.

If the verification fails, the constructor throws an exception signaling
that the certificate chain is not well-formed, and the creation of
SecurityWrapper object will not be completed.

Helper classes for certificates and keys
manipulation

To do easy the certificate and key retrieving from keystores, a helper
class has been implemented:

• net.fada.directory.security.FadaSecurityHelper

This class contains some specific methods for getting keys and
certificates stored in keystores which exist in the local machine.

To retrieve a private key the following static method may be used:

• public static PrivateKey getPrivateKeyFromFile(

String fileName,

String password,

String alias);

This method returns the private key stored in the keystore specified
by the parameter “fileName”, and which is associated to the key
entry specified by the alias name “alias”. To retrieve this private key
is necessary pass in to the method the password which protects the
access by unauthorized personnel.

This method returns the private key if and only if the following
conditions are held:

• The file specified by the parameter “fileName” exists

• The file specified by the parameter “fileName” has read permissions
for the user executing the application.

M.Vidal, J. Sánchez, J. Aparicio 127

CORE FADA - Dynamic and secure loading of remote code in
FADA

• There is a key entry associated with the alias name passed in as
parameter.

• The private key stored in the keystore has a key algorithm that is
known by the key manager of the standard JAVA API.

If any of these conditions can not be accomplished the method will
throw an exception signaling that the key is unrecoverable, detailing
the reason.

In a similar manner, to get a certificate stored in a keystore, the
following static method may be used:

• public static X509Certificate getCertificateFromFile(

String fileName,

String password,

String alias);

The parameters passed in to the method are the same as the
previous method. But the parameter “password” is not really
required for the correct retrieving of the certificate. In this case a null
object may be passed in for this parameter.

The conditions which must hold true to complete the retrieval
successfully are nearly the same:

• The file specified by the parameter “fileName” exists

• The file specified by the parameter “fileName” has read permissions
for the executing user.

• There is a certificate entry associated with the alias name passed in
as parameter.

• The certificate stored in the keystore has a certificate algorithm that
is known by the certificate manager of the standard JAVA API.

If any of these conditions can not be hold true the method will throw
an exception signaling that the certificate is unrecoverable, detailing
the reason.

M.Vidal, J. Sánchez, J. Aparicio 128

CORE FADA - Default FADA node security wrapper
implementation

Default FADA node security wrapper
implementation

In the default implementation of a FADA node, the security wrapper
functionality consists in the following parts:

• An optional secure communication which is provided through the use
of HTTPS messages between the FadaProxy and Fada node.

• Secure web administration using HTTPS messages and SSL sessions.

Secure communications between Fada node and its
proxy

A new implementation of Fada proxy has been written to allow secure
communications between a Fada node and its proxy. To do this, a
new class has been implemented:

• net.fada.directory.FadaSecureProxy

This class allows the communication with a Fada node in a secure
way. All messages sent by this class to the Fada node go through
HTTPS using the SSL protocol.

SSL is a technology to ensure privacy and reliability in the
communication between two applications. It uses an asymmetric
cryptographic system based in public/private key for negotiating a
key used to establish a communication based in symmetric
encryption. SSL is the encryption protocol most widely extended and
used in Internet nowadays. Moreover, it is the protocol most used in
web servers where confidencial information is requested.

The main security properties provided by SSL are:

• Secure communication based in symmetric encryption.

• Authentication and negotiation based in asymmetric encryption.

M.Vidal, J. Sánchez, J. Aparicio 129

CORE FADA - Default FADA node security wrapper
implementation

• Reliable communication based in message integrity.

Among the different communication options there is the possibility to
authenticate the partakers of the connection through the use of
certificates. These certificates can be verified by a verifier entity as
VeriSign. Although, it is also allowed that the partakers are not
authenticated. So, the following communication modes can take to:

• Anonymous communication: None of the partakers is
authenticated.

• Server authenticated.

• Client authenticated.

• Both authenticated.

In the Fada secure communications, both are authenticated. To
achieve this, both must have certificates based in private/public key
(like X509 certificates). If some of the partakers doesn't accomplish
with this rule an insecure communication will be assumed.

But a client who would like to communicate with a Fada node will first
need to retrieve the Fada proxy (FadaSecureProxy) associated with
this Fada node. To take on this bootstrapping action, no secure
communication is required. So, the Fada node must allow two
communication modes: secure and insecure mode. In the design of
the secure Fada node the following functionality has been taken in
account:

• To listen requests via insecure communication:

• Only the following GET HTTP requests are allowed:

• State queries (ping, time, view neighbors, view services, ...).

• Non-administrative web queries (view documentation, view
images, ...).

• Proxy queries (to retrieve the Fada proxy).

M.Vidal, J. Sánchez, J. Aparicio 130

CORE FADA - Default FADA node security wrapper
implementation

• To listen requests via secure communication.

• Both POST and GET HTTP requests are allowed:

• State queries.

• Administrative and non administrative web queries.

In a secure Fada node, two ports are ready to listen for queries. A
port takes over insecure connections, while another port takes over
secure connections.

M.Vidal, J. Sánchez, J. Aparicio 131

SECURE

FADA NODE

CLIENT

Fada Proxy

Requesting for FadaProxy

Non secure FADA endpoint

Secure FADA endpoint

Secure communications between
FADA Node and its proxy

Returning FadaProxy

CORE FADA - Default FADA node security wrapper
implementation

Notes about policy files configuration

Java policy files

Java security has always been an issue, especially for networked
code. While it has always been possible to develop custom security
policies to protect private resources (using Java's security-manager
paradigm), this model didn't easily allow for flexible policies. Up until
now, enforcing such policies seemed somewhat impractical. With the
advent of JDK 1.2, the new security model improves greatly (not by
replacing the original model, but by enhancing it).

Java has always had many different faces to its security model. It has
a strongly typed compiler to eliminate programming bugs and help
enforce language semantics, a bytecode verifier that makes sure the
rules of Java are followed in compiled code, a classloader that's
responsible for finding, loading, and defining classes and running the
verifier on them, and the security manager: the main interface
between the system itself and Java code.

There are two default policy files concerning to security into JVM and
which are inside any JDK distribution:

• java.security (located in <java_install_dir>/jre/lib/security
directory)

• java.policy (located in java_install_dir>/jre/lib/security directory)

The first of them makes reference to various security properties
which are set for use by java.security classes. This is where users can
statically register Cryptography Package Providers ("providers" for
short)1. This file is not necessary to be changed, unless a customized
implementation of a FADA node is made, and it uses a cryptography
algorithms that are not supported (implemented) by default
providers.

1 The term "provider" refers to a package or set of packages that supply a
concrete implementation of a subset of the cryptography aspects of the Java

Security API. A provider may, for example, implement one or more digital signature
algorithms or message digest algorithms.

M.Vidal, J. Sánchez, J. Aparicio 132

CORE FADA - Default FADA node security wrapper
implementation

The java.policy file is the default name given the user security policy.
By default, this policy file is stored in the user's home directory. Since
policy files only grant privileges, there is no danger of clashing. In
other words, there is no provision for denying a privilege except to
simply not grant it.

Fada policy file
The fada policy file is stored in <fada_install_dir> and is called
policy.file. The following requirements or permissions must be
allowed in the execution of a Fada node:

• file read permissions for the following directories (and files
contained in them):

• <root_fada_dir>

• <root_fada_dir>/docs

• <root_fada_dir>/dl

• <root_fada_dir>/images

• <root_fada_dir>/policy.file

• <tmp_dir>

• file write permissions for the following files:

• <root_fada_dir>/fada.rc

• <tmp_dir>

• file delete permissions for the following files:

• <root_fada_dir>/fada.rc

• <tmp_dir>

• socket permissions

• To allow listen, accept, resolve incoming and outgoing
connections at non-secure port

M.Vidal, J. Sánchez, J. Aparicio 133

CORE FADA - Default FADA node security wrapper
implementation

• To allow listen, accept, resolve incoming and outgoing
connections at secure port (only if the Fada node is configured
to work in secure mode)

• To allow connect to neighbor proxies codebase resources

• Runtime permissions

• To allow create class loaders

• To allow get class loader

• To allow exit to Virtual Machine (JVM)

• To allow set Security Manager

• To allow create threads and modify their states

• Property read access permissions

• To allow read java.rmi.server.codebase property

• To allow read http.proxyHost property

• To allow read http.proxyPort property

• To allow read java.io.tmpdir property

• Property write access permissions

• To allow write java.rmi.server.codebase property

• To allow write http.proxyHost property

• To allow write http.proxyPort property

• To allow write java.security.policy property

The policy file used to run a Fada node is fully wrote in appendix A

M.Vidal, J. Sánchez, J. Aparicio 134

CORE FADA - Velocity and FADA Web based management

Velocity and FADA Web based
management

In its version 5.2.4, FADA improved a lot the web based
management module using as HTML rendering engine the Jakarta
Velocity Java-based template engine.

The manner to create dynamicaly these pages was very improper
before to adopt this technology for rendering the few HTML pages
that conforms the FADA web based management. The pages were
created using hardcoded string concatenation... Incredible but true!
This way to construct the pages was very unflexible, uncustomizable
and for each minimal change in these pages implied that the code
must be recompiled.

Using Velocity, the web based management module achieves the
following characteristics:

● Implements MVC model.

● Based on templates: Code recompilation after some change in a
page is not needed never again.

● Customizable by node administrator (even in runtime).

It is important to acquire a minimal knowledge level about Velocity
technology to understand properly the concepts explained in the next
chapters.

Templates and variables
For the actual version of FADA there are 13 templates used to

shape its web based management. Each template is asociated to a
particular URI and a set of variables to be used by them. These
variables are accessible by templates due they are in the velocity
engine context.

There are a few global variables that can be used by all the
templates, due are defined during velocity engine initialization (and
not modified never again). These variables is shown in the next table:

M.Vidal, J. Sánchez, J. Aparicio 135

CORE FADA - Velocity and FADA Web based management

Variable name Description Value sample

Node_Public_URL
String containing the
host:port value where
FADA node is binding

slacky.fadanet.org:2002

FadaVersion
String containing the
version of the

5.2.6

LOGO_NAME
Filename of the picture
choosed as logo for the
FADA node

fadalogo.gif

Node_ID
FadaID for the actual
instance of the node

5b553575-4d8f-734f-
1e62-8ba006f7dc7e

There are defined a virtual template names for each template. This
virtual template names are associated to a physical template files by
a properties file. This properties file is placed by default in the path:

● <FADA_INSTALL_DIR>/templates/templates.properties

All physical templates file are located in the same directory than the
properties file.

This properties file is pointed by a property defined inside the FADA
configuration file (fada.rc). It allows to retrieved the velocity
properties file by the process in charge of construct and initialize the
Velocity engine. This key name of this property is:
templatesPropertiesFile.

The contents included in the templates.properties file complies with
the properties file format specified to serve as initialization2

parameter to the Velocity engine.

In the next table, it is shown the relationship between URI and
template associated. All cited templates in the table are available in
any FADA bundle since its 5.2.4 version.

URI Virtual
Template

Default template file
name

/ MAIN_PAGE Main.vm

/admin ADMIN_PAGE AdminPage.vm

2 See org.apache.velocity.app.Velocity.init(Properties props) javadoc and
other related cdocumentation

M.Vidal, J. Sánchez, J. Aparicio 136

CORE FADA - Velocity and FADA Web based management

URI Virtual
Template

Default template file
name

/services SERVICES_PAGE ServicesPage.vm

/neighbors NEIGHBORS_PAGE NeighborsPage.vm

/time TIME_PAGE TimePage.vm

/ping PING_PAGE PingPage.vm

/relatedDocs DOCS_PAGE DocsPage.vm

/admin/changePassPage PASSWORD_PAGE PasswordPage.vm

/plugins PLUGINS_PAGE PluginsPage.vm

The specific variables accesible by each template is shown in the
next table:

Virtual
Template

Variable
name

Variable
description

ADMIN_PAGE

FadaNeighbors

Array of String containing
the neighbors registered
in the node (format
host:port)

FadaNeighborsCount Number of neighbors

FadaServices

FadaServiceMatches3

instance containing all
the service proxies
registered in the node

AdminLastMessage

String with the last
message generated as
result to perform an
administrative action

PluginsCount
Number of plugins
registered

PluginsObjs
Array of PluginIO4 objects
containing the plugins
registered

3 net.fada.directory.tool.FadaServiceMatches

4 net.fada.plugins.PluginIO

M.Vidal, J. Sánchez, J. Aparicio 137

CORE FADA - Velocity and FADA Web based management

Virtual
Template

Variable
name

Variable
description

SERVICES_PAGE FadaServices

FadaServiceMatches5

instance containing all
the service proxies
registered in the node

NEIGHBORS_PAGE
FadaNeighbors

Array of String containing
the neighbors registered
in the node (format
host:port)

FadaNeighborsCount Number of neighbors

TIME_PAGE Node_Time
String containing the
value of actual time6

PING_PAGE -none-

DOCS_PAGE -none-

PASSWORD_PAGE -none-

MAIN_PAGE -none-

PLUGINS_PAGE

PluginsCount Number of plugins
registered

PluginsObjs
Array of PluginIO7 objects
containing the plugins
registered

Web based management: Themes
To create a theme for the FADA web based managemenent only is

necessary to follow these steps:

● Recreate all the templates pages with the whished customized
look.

● Place all the templates files in the same directory level.

● Creates a new templates.properties file in which is specified the
new relationship between virtual template names and the
recently created template pages

5 net.fada.directory.tool.FadaServiceMatches

6 Obtained value by calling to System.currentTimeMillis() method

7 net.fada.plugins.PluginIO

M.Vidal, J. Sánchez, J. Aparicio 138

CORE FADA - Velocity and FADA Web based management

NOTE: In case of the new theme's templates are using CSS (set aside)
or other resources for defining the page, these resources should be
placed in the <FADA_INSTALL_DIR>/dl directory8 .

To change the theme used with the web based management just
modify the FADA configuration file to change the
templatesPropertiesFile property value. So, the value of this property
will contain the relative path to the templates.properties file created
for the new theme.

8 This is the virtual context root for the mini HTTP server implemented inside FADA to serve
the downloable resources as JAR file containing the classes of the FADA proxy (fada-dl.jar).

M.Vidal, J. Sánchez, J. Aparicio 139

CORE FADA - Fada Plugin Architecture

Fada Plugin Architecture

To permit add extensions to the functionality present in a FADA
node by a modules written by third parties we are working to
implement a plugin architecture module to be included to FADA.

Actual version 5.2.6 (and above) of FADA includes a beta
implementation of this module corresponding to the first iteration's
design.

The related documentation of this new component developed inside
the scope of the FADA project is separated from this document
because it is changing very often. For further information please
refers to the last updated document “Fada Plugin Architecture”.

M.Vidal, J. Sánchez, J. Aparicio 140

CORE FADA - Installation and Setup

Installation and Setup

The FADA software bundle comes in two flavors: a self-installing
wizard for Windows platforms, and a self-installing shar script for
UNIX platforms.

The installation of the software is straightforward, requiring only to
execute the self-extracting archive on any directory.

There is also a configuration script that is automatically executed by
the installation script or wizard, to allow the easy configuration of the
FADA software, if it is intended to set up a permanent (or temporary)
FADA node. If it is only desired to use the software to develop server
or client classes, this step is irrelevant.

The configuration utility creates or modifies the file fada.rc, that
contains the parameters needed by a FADA node to run. The
parameters are specified in a single line in the file fada.rc, followed
by an equals sign (=) and the parameter value, without any space.
Such parameters are:

– The port number. This is the port where the FADA node will be
listening for requests from outer entities. In theory, only two types
of connections will be made to this port. One type is the
connections performed by the Fada proxy, that invokes the
methods on the FADA node to perform operations such as
connection and disconnection of FADA nodes, and the registration
and lookup of service proxies. The other type of connections will
be those performed from within a web browser, to inspect the state
of a FADA node, and to administer it. The parameter name is
nonSecurePort.

– The url. This is the url that outer clients must use in order to
access the instance of the FADA node installed. It must include the
hostname, domain and port number of the FADA node. Note that
this url needn’t be the same url as the host it is running on,
specially if a firewall exists in your environment. More on this issue
a bit later. The parameter name is nonSecureURL.

– The type of FADA node. If an SSL port will be used for
administration it must be specified by this parameter. The
parameter name is secureMode, and it accepts the values true or
false.

M.Vidal, J. Sánchez, J. Aparicio 141

CORE FADA - Installation and Setup

– The secure port. This parameter is optional, and is not provided in
older versions of the FADA software, such as the ones that are
publicly available at the time of this writing. This port can be used
to administer the FADA node by using HTTP over SSL, that allows
the use of encrypted connections. In this way neither the
administrator password nor the operations performed can be easily
seen by foreign entities. The parameter name is securePort. The
parameter secureMode must be set to true to make this parameter
work.

– The secure url. This parameter is also optional, and neither used in
the older versions of the FADA software. As the port number for
SSL connections is different, so must be the url. The secure port
must also be specified. The parameter name is secureURL. The
parameter secureMode must be set to true to make this parameter
work.

– The policy file. This parameter specifies the Java policy file to be
used by the security manager the FADA node is executing. The
format, syntax and options of this file can be seen in the document
entitled FETISH communications and FADA security wrappers. That
document also points to the authoritative sources of information
about Java, security and policy files. The parameter name is policy.

– The codebase. This parameter specifies the url where the classes
for the FADA proxy and related classes can be found. The FADA
node provides a mini HTTP server that will be used to deliver these
classes. However, an external HTTP server may be used if it is
desired. The url of such server must be specified by this
parameter. If the FADA embedded HTTP server is used, the
codebase parameter must be the public url of the FADA node plus
the path “/dl/fada-dl.jar”. The protocol prefix must be specified. If,
for example, the url of the FADA node is fada.fadanet.org:2002,
then the codebase annotation specified in the configuration script
must be http://fada.fadanet.org:2002/dl/fada-dl.jar. More on
downloadable code and the codebase property in later chapters.
The parameter name is codebase.

M.Vidal, J. Sánchez, J. Aparicio 142

CORE FADA - Installation and Setup

– The list of nodes to connect this node to initially. By specifying an
initial list of nodes to connect this one to, it is not necessary to
enter the administration interface to manually connect them. The
FADA node will do that upon startup. Zero or one of these
parameters can be specified, one for each node it is desired to
connect this FADA node to. The parameter name is connectTo.
The list of FADA nodes to connect to is separated by any number of
spaces (ASCII char 32). If the list spans more than one line no
carriage return characters must be added.

– The username and password of the administrator. Both the
username and password must be concatenated together by
introducing a colon and converted to base64 coding. If, for
example, the username is “fada” and the password is
“password”, the concatenation is “fada:password”, and the
base64 codification of this string is “ZmFkYTpwYXNzd29yZA==”.
Note that the base64 coding scheme is case sensitive. The FADA
software provides a base64 encoder/decoder in the class
net.fada.directory.tool.Base64. It can be invoked like this:

java ­classpath fada­lib.jar
net.fada.directory.tool.Base64 {encode|decode}

and it will encode or decode, as specified by the parameter, all
characters sent to its standard input to its standard output. The
fada-lib.jar file is part of the standard FADA distribution. The
parameter name is administrator.

– If the FADA node is to be run behind a firewall, and an http proxy is
to be used to communicate with the rest of the world, the http
proxy hostname and port number can also be specified. Note that,
in spite of the use of http proxies there must be at least one port
opened in the firewall and redirected to the FADA node. The
parameter names are proxyHost and proxyPort. No protocol prefix
must be specified.

– Enabling the multicast extensions. Setting the property
allowsMulticastDiscovery to true implies to enable the multicast
extensions in the FADA node. It says, during the startup of the
FADA node the announcement mechanism is performed, and the
node will be discoverable by FADA clients using the discovery
mechanism.

M.Vidal, J. Sánchez, J. Aparicio 143

CORE FADA - Installation and Setup

– The multicast group. By default is set to public, but it is posible to
create separated federations in the same LAN sharing different
values for this property between groups of FADA nodes.

– The web based managemenent theme. By default, this property
value contains the relative path to the default theme for the FADA
web based managemenent. In case to wish used other installed
theme, the value of this property must be changed to contain the
relative path to the customized theme.

– The plugins. Plugins installed in the FADA node are specified in the
file which is specified in the property pluginsPropertiesFile. To
enable or disable a plugin refers to this file.

The fada.rc file may have comments. A comment is started by a
hash mark (#), and spans through the rest of the line. Multiline
comments are not allowed, multiple comment lines must be used if
necessary. An example of the fada.rc file is given below:

Example fada.rc file

by the FADA development team

nonSecureURL=camaron.fada.net:2002

secureURL=camaron.fada.net:2003

nonSecurePort=2002

securePort=2003

secureMode=false

administrator=ZmFkYTpwcm9qZWN0

policy=./policy.file

codebase=http://camaron.fada.net:2002/dl/fada-dl.jar

allowsMulticastDiscovery=false

proxyHost=proxy.fada.net

proxyPort=80

connectTo=www.singladura.com:2002 fada.fadanet.org:2002

allowsMulticastDiscovery=true

multicastGroup=public

templatesPropertiesFile=./templates/templates.properties

pluginsPropertiesFile=./plugins/plugins.properties

KeyStore=/home/jordi/certificates/b

TrustStore=/home/jordi/FadaTrustStoreB

aliasCA=thawte test ca root

M.Vidal, J. Sánchez, J. Aparicio 144

CORE FADA - Administration of the FADA

Administration of the FADA

Although a FADA node needs no administration, the management
of the FADA network requires initial setup. This initial setup can be
greatly automatized, and the FADA software provides the means for
this automatization of the bootstrap procedure of the FADA node.
However, if a finer control is desired on the FADA network, an
administration front-end is provided.

This administration front-end is accessible through a simple web
browser. All it’s needed is to provide the URL of the FADA node whose
state is wished to monitor and/or manipulate. Starting a web browser
and pointing it to, for example, slacky.fadanet.org:2002, we obtain
the following screen:

M.Vidal, J. Sánchez, J. Aparicio 145

CORE FADA - Administration of the FADA

If the “See neighbors” link is clicked the current list of FADA nodes
known to this node is shown, like this:

The administration profile can be entered by clicking on the “Node
Management” link. This actions pops up an authentication window
requiring a username and password to administer the FADA node:

M.Vidal, J. Sánchez, J. Aparicio 146

CORE FADA - Administration of the FADA

Correctly entering the proper values the administration front-end is
finally entered:

Through this interface it is possible to enhance or degrade the
FADA node connectivity. In this way it is possible to create limited-
range FADA networks.

NOTE: The services registered in a FADA node (but available from all
around the FADA architecture) can also be seen through the
appropriate link, and they can also be deregistered from within this
administration profile, as long as that the proper username and
password are provided.

M.Vidal, J. Sánchez, J. Aparicio 147

CORE FADA - Appendix A

Appendix A

A example of FADA policy file
grant codebase "file:ntp.jar"{

 permission java.net.SocketPermission "*:*",

"accept,listen,connect,resolve";};

grant codebase "file:fada-lib.jar"{

 // file permissions

 permission java.io.FilePermission "./docs/-", "read";

 permission java.io.FilePermission "./dl/-", "read";

 permission java.io.FilePermission "./images/-", "read";

 permission java.io.FilePermission "policy.file", "read";

 permission java.io.FilePermission "/tmp/*",

"read,write,delete";

 permission java.io.FilePermission "fada.rc",

"read,write,delete";

 permission java.io.FilePermission "tmp_fada_rc.tmp",

"read,write,delete";

 // socket permissions

 //permission java.net.SocketPermission "*:1024-", "connect";

 //permission java.net.SocketPermission "*:80", "connect";

 permission java.net.SocketPermission "127.0.0.1:1024-",

"accept";

 permission java.net.SocketPermission "172.26.0.3:1024-",

"accept,resolve";

 permission java.net.SocketPermission

"*:*","resolve,connect";

 permission java.net.SocketPermission "193.204.114.233:*",

"accept,listen,resolve,connect";

 permission java.net.SocketPermission "ntp2.ien.it",

"connect,accept,listen,resolve";

 // Runtime permissions

 permission java.lang.RuntimePermission "getClassLoader";

 permission java.lang.RuntimePermission

"getContextClassLoader";

 permission java.lang.RuntimePermission "createClassLoader";

 permission java.lang.RuntimePermission "exitVM";

M.Vidal, J. Sánchez, J. Aparicio 148

CORE FADA - Appendix A

 permission java.lang.RuntimePermission

"createSecurityManager";

 permission java.lang.RuntimePermission "modifyThread";

 permission java.lang.RuntimePermission "modifyGroupThread";

 // Property permissions

 permission java.util.PropertyPermission

"java.rmi.server.codebase", "read,write";

 permission java.util.PropertyPermission "http.proxyHost",

"read,write";

 permission java.util.PropertyPermission "http.proxyPort",

"read,write";

 permission java.util.PropertyPermission "java.io.tmpdir",

"read";

 permission java.util.PropertyPermission

"java.security.policy", "write";

};

M.Vidal, J. Sánchez, J. Aparicio 149

CORE FADA - Bibliography

Bibliography

Graph algorithms
[1] Leqiang Bai, Hajime Maeda: A Broadcasting Algorithm with Time and
Message Optimum on Arrangement Graphs. Journal of Graph Algorithms
and Applications. http://www.cs.brown.edu/publications/jgaa/ vol. 2, no. 2,
pp. 1-17 (1998)

[2] P. Berthomé, A. Ferreira, S. Perennes: Optimal Information
Dissemination in Star and Pancake Networks.

[3] M. Frans Kaashoek, Andrew S. Tanenbaum, Susan Flynn Hummel,
Henri E. Bal: An Efficient Reliable Broadcast Protocol

[4] John Sucec, Ivan Marsic: An Efficient Distributed Network-Wide
Broadcast Algorithm for Mobile Ad Hoc Networks.

[5] Yu-Chee Tseng, Wu-Lin Chang, Jang-Ping Sheu: Efficient All-to-All
Broadcast in Star Graph Interconnection Networks. Proc. Natl. Sci. Counc.
ROC(A) Vol. 22, No. 6, 1998. pp. 811-819.

Jini over Internet
[6]Ahmed Al-Theneyan, Piyush Mehrotra, Mohammad Zubair: Enhancing
Jini for Use Across Non-Multicastable Networks.

The Kalman filter
[7] Peter D. Joseph: Introductory Lesson to the Kalman Filter.

[8] Peter S. Maybeck: Stochastic models, estimation, and control. Volume
1.

[9] Patrick D. O'Malley: Use of a Kalman Filter to Improve Realtime Video
Stream Image Processing: An Example.

[10] Phillip D. Stroud: A Recursive Exponential Filter For Time-Sensitive
Data.

[11] Greg Welch, Gary Bishop: An Introduction to the Kalman Filter.

[12] Greg Welch, Gary Bishop: SCAAT: incremental Tracking with
Incomplete Information.

M.Vidal, J. Sánchez, J. Aparicio 150

CORE FADA - Bibliography

Network delays and algorithms
[13] Rene L. Cruz: A Calculus for Network Delay.

[14] D.L. Mills: Internet Delay Experiments (RFC889).

Jini
[15] W. Keith Edwards: Core Jini. The Sun MicroSystems Press. Prentice-
Hall, 1999.

RMI
[16] Esmond Pitt and Kathleen McNiff: The Remote Method Invocation
Guide. Addison-Wesley 2001.

Java
[17] Tim Lindholm, Frank Yellin: The Java Virtual Machine Specification,
second edition. http://java.sun.com/docs/books/vmspec/2nd-
edition/html/VMSpecTOC.doc.html

Java based technologies
[18] Apache Jakarta Velocity guides:

Developers: http://jakarta.apache.org/velocity/developer-guide.html

Users: http://jakarta.apache.org/velocity/user-guide.html

Other
[19] IANA - Reserved multicast addresses.

http://www.iana.org/assignments/multicast-addresses

[20] RFC1945 – Hypertext Transfer Protocol – HTTP/1.0

[21] RFC2616 – Hypertext Transfer Protocol – HTTP/1.1

[23] RFC2617 – HTTP Authentication: Basic and Digest Access
Authentication

[24] RFC1321 – The MD5 Message-Digest Algorithm

[25] RFC1341 – MIME (Multipurpose Internet Mail Extensions

M.Vidal, J. Sánchez, J. Aparicio 151

CORE FADA - Bibliography

[26] RFC1421 – Privacy Enhancement for Internet Electronic Mail: Part I:
Message Encryption and Authentication Procedures.

[27] RFC1510 – The Kerberos Network Authentication Service (V5)

[28] RFC1511 – Common Authentication Technology Overview

[29] RFC1704 – On Internet Authentication

[30] RFC1750 – Randomness Recommendations for Security

[31] RFC1760 – The S/KEY One-Time Password System

[32] RFC2002 – IP Mobility Support

[33] RFC2045 – Multipurpose Internet Mail Extensions (MIME) Part One:
Format of Internet Message Bodies.

[34] RFC2047 – MIME (Multipurpose Internet Mail Extensions) Part Three:
Message Header Extensions for Non-ASCII Text

[35] RFC2195 – IMAP/POP AUTHorize Extension for Simple
Challenge/Response

[36] RFC2222 – Simple Authentication and Security Layer (SASL)

[37] RFC2243 – OTP Extended Responses

[38] RFC2289 – A One-Time Password System.

[39] RFC2444 – The One-Time-Password SASL Mechanism.

[40] RFC2518 – HTTP Extensions for Distributed Authoring – WEBDAV

[41] RFC 2459 - Internet X.509 Public Key Infrastructure Certificate and
CRL Profile.

[42] RFC2693 - SPKI certificate theory.

[43] RFC2246 - The TLS Protocol Version 1.0.

Note: all RFCs can be found at
http://www.ietf.org/rfc/rfcXXX.txt, where XXX must be
substituted by the RFC number of interest. For example, the
bibliography entry number 37 has the url
http://www.ietf.org/rfc/rfc2518.txt.

M.Vidal, J. Sánchez, J. Aparicio 152

CORE FADA - Bibliography

Security background
[44] Matt Blaze, Joan Feigenbaum, John Ioannidis, and Angelos D.
Keromytis. The role of trust management in distributed systems security. In
Jan Bosch, Jan Vitek, and Christian D. Jensen, editors, Secure Internet
Programming: Security Issues for Mobile and Distributed Objects, Lecture
Notes in Computer Science volume 1603, pages 185 210. Springer, 1999.

[44] Matt Blaze, Joan Feigenbaum, and Jack Lacy. Decentralized trust
management. In Proceedings of the 1996 IEEE Symposium on Security and
Privacy, pages 164 173, Oakland, California, May 1996.

[45] Sun Microsystems, Java 2 Security Architecture.

http://java.sun.com/products/jdk/1.2/docs/guide/security/spec/security-
s pecTOC.fm.html

[44] Sun Microsystems, Java 2 Security tools.

http://java.sun.com/j2se/1.2/docs/tooldocs/tools.html#security

[45] Sun Microsystems, Default Policy Implementation and Policy File
Syntax

http://java.sun.com/j2se/1.4/docs/guide/security/PolicyFiles.html

[46] Bill Venners, Inside the Java Virtual Machine. Security. Ch. 3, McGraw-
Hill, 1998.

M.Vidal, J. Sánchez, J. Aparicio 153

