
FADA tutorial

FADA tutorial -

Revision history

Date Version Description Author
30 June 2004 1.0 Initial Javier Noguera

J.Noguera 2

FADA tutorial - Table of contents

Table of contents

Table of contents..2

Foreword...3

Introduction..4

What is FADA ?...5

Why FADA...8

FADA Examples..9
Do-it-yourself...9
Fadagen...16
J2ee..22

FADA nodes over a LAN..27

Renewal Event..29

Security Wrapper..31

Annex A..33
Client and Service interface...33
Do-it-yourself...36
Fadagen...44
j2ee..50

J.Noguera 3

FADA tutorial - Foreword

Foreword

...

We hope you find the information contained here complete and
useful.

Enjoy it.

The FADA development team.

J.Noguera 4

FADA tutorial - Introduction

Introduction

This user manual tries to help programmers to work with FADA
technology. It includes examples and explanations about the most
important FADA scenarios.

In the first chapter there is a short explanation about FADA itself
and about FADA from the point of view of the client and the server. If
you need further detailed information about FADA architecture you
will find it in the file named Core FADA. It explains in depth the
bases of FADA, FADA nodes communication, etc.

In the second chapter we there is a discussion about the use of
FADA and the cases in which FADA may be necessary.

In the third chapter there are some FADA scenarios: do-it-yourself,
fadagen and fada J2EE. We will implement a solution in all three
scenarios using FADA with the same example. You will find all the
code for the three examples in the Annex A. It can be used as a
reference.

J.Noguera 5

Fada Node

Fada Node

Fada Node

Fada Node

Fada Node

FADA network architecture

FADA tutorial - What is FADA ?

What is FADA ?

FADA stands for “Federated Advanced Directory Architecture”. It is
a virtual Lookup Server in the sense that different Lookup Servers
(FADA nodes) will work together to provide the LookupServer
functionality from any entry point. Also, any of these Lookup Servers
will cooperate with the rest to find implementations of services.

The FADA is a truly distributed system, in the sense that there is no
central authority or common communication channel.

The FADA holds proxies for services. A proxy is a Java class that
acts as a mediator between client and service provider performing
communication with a real service, and that is downloaded at run-
time by clients. Clients use the public methods on the proxies to
access the services. These public methods are specified in Java
interfaces that service proxies implement. A FADA node is a service
that acts as an entry point and a container to the distributed
database of services.

Service providers must implement Java classes that act as a
gateway to use their services, which may be written in Java or not. In
case they aren't, the Java class they provide to the FADA clients, the
service proxy from now on, can use whatever method to
communicate with the service. For example, the service could be
written in C, or it could be accessed through http, and the service
proxy could open sockets to the proper ports to communicate with
the service.

Note that these proxy objects will be executed in the client's
machine, so this fact must be taken in account when designing and
implementing service proxies.

J.Noguera 6

Situation after registration

Server Machine

Service 1

Java, C, Php, Perl, Web
Service, Corba, sp .NET, ...

codebase

Accessible by HTTP protocol

Machine #2

Fada Node

Proxy 1

Proxy 2

...

FADA tutorial - What is FADA ?

How FADA works
Let's see now, more in detail, one FADA node and the steps used

by the server to register a service and by the client to look for a
service.

One server who wants to register a service in a FADA node needs:

1. To have a service running. It is necessary to difference between
service and proxy. The service must be running over any machine
and can be implemented with any language or technology. The
proxy is a little piece or code that knows how to communicate with
the service.

2. To define a service interface. This interface will define the
methods that the client can execute to communicate with the
service. This interface is accessible to all clients and must be coded
in Java language.

3. To code a service proxy. The proxy is the implementation of the
service interface and it is the way in which the client executes the
service on the server side. The proxy class will be executed on the
client side, this has to be taken in account when implementing it. It
has to be coded in Java language.

4. To register the proxy in one FADA node. When the proxy is
uploaded to one FADA node it is available for any node within the
FADA network. Clients now can discover and use the service.

5. Make accessible a jar file with libraries. Proxy implementation
is not known by the clients so it has to be downloaded. The server
needs to make accessible all extra classes in a jar file to be used
by service proxy. The location of this jar file is named codebase.

J.Noguera 7

Situation after discovering

Machine #2

Fada Node

Proxy 1

Proxy 2

...

Client Machine
JRE

Client
program

Dynamically downloaded
and loaded

Proxy 1

codebase

1. look up the service

2. download the proxy
and the extra classes

3. execute service on server

FADA tutorial - What is FADA ?

One client who wants to use a service (previously registered in the
FADA network) needs to follow the next steps:

1. To have the service interface in the classpath. Client does
not need to know anything about service or proxy implementation
but service interface must be accessible for compiling.

2. Discover the service. To discover the service, client needs to
know the name of the service interface (and optionally some of its
entries) and the address of one FADA node that is part of the FADA
network.

3. Download and execute the proxy. After discover the service,
FADA framework will automatically download and load the proxy in
memory using the codebase. Proxy is now ready to be used by
client therefore client will communicate directly with the service
running on the server.

J.Noguera 8

FADA tutorial - Why FADA

Why FADA

FADA allows the servers to publish one or more services and make
them accessible to everyone. On the other hand, FADA allows to the
clients to find any published service and use it.

Client does not need to know how the service is implemented
neither where it is. Client only must find the service and, this is the
good thing, FADA assures us that the service is working.

We can imagine, for example, that we usually use FADA to access
to a printer service located over Internet (ie. A photo-shop store). One
day the printer is moved (its IP and name have changed). This is not
a problem, because a new proxy will be registered by the server. If
the printer is changed and a new protocol is needed, it is not a
problem either, because a new proxy will be implemented and re-
registered in the FADA network. If the server is down and
unaccessible the proxy will be unregistered automatically and no
client will be able to use that printer.

Thinking of FADA we can list situations in which it can be used and
in which it improve the development, the performance and the
accessibility:

• If you need a distributed system over Internet (WAN) where many
servers offer many services for clients.

• If the service nature is noncontinuous. In this scenario, clients
cannot access to the service at any moment. FADA assures the
client will not find the service if it is down.

• If the service implementation can often change. The proxy will
code the new implementation without client knowledge.

• If you have a distributed system with different Operating Systems
and/or different applications languages and you want to access in
the same way them all... of course, in Java.

• If you want to connect two or more different applications. To
publish their service interfaces is the easiest way to integrate
them.

J.Noguera 9

FADA tutorial - FADA Examples

FADA Examples

We will discuss now some scenarios in the use of FADA. This
chapter is a technical reference for programmers where they can see
how to use FADA API.

The sample code can be found at the end of the document (Annex
A)

You can access directly to the most suitable scenario:

• Do-it-yourself. The easiest way to understand FADA. There is a
standalone service with and a customized protocol and it is
necessary to code and register the proxy.

• Fadagen. The easiest way to create a service. There is no service
nor proxy but FADA will code them both for us.

• J2EE. We can code the service like a servlet in an Application
Server and register it at start up.

We will use the same example in all three scenarios: “There is a
server where users can be added or removed. A client looks for the
service (discovers it over FADA network) and add his/her username.
Clients can also get a list of usernames from the server”.

Do-it-yourself scenario
In the first case we begin with a server running and waiting for

clients. It can be coded in any language and it can implement any
protocol (http, simple xml, soap...). To register this service in the
FADA network we only need to define the service interface and to
code the proxy.

Server
In our example the server implements it own communication

protocol: One character that indicates the action and one argument if
needed. There are four possible actions:

• Add a user: “A <user_name>”

• Remove a user: “R <user_name>”

• List usernames: “L”. Returns a list of usernames separated by “#”
token.

J.Noguera 10

FADA tutorial - FADA Examples

• Quit: “Q”. This stops the server.

We can run the service before registering the service. We will leave
it listening on port 2727.

java net.fada.examples.uptoyou.Userlist 2727

Users who do not want to use FADA can access to the server now.
We will still wait until the service will be registered.

Service interface
Now we have to define the server interface. This interface is used

by clients to access to the server, so, we need to define the methods
to be used by clients. In this example we will authorize the clients to
add, remove and get a list of usernames, but they will not stop the
server.

public interface RemoteUserList {

 public void register (String name);

 public void unregister (String name);

 public String getRoomName ();

 public String [] getList ();

}

We can notice three important aspects of the interface definition:
First, we have not define a quit method, so we will not allow users to
stop the server. Second, the getList method will return an array of
usernames instead of a usernames list separated by “#” token. And
third, we have added an extra method called getRoomName not known
by the server but, in this case, known by the proxy.

Client must know the interface before compiling so it has to be well
done and preview future changes. Changes in the implementation
(proxy) will not affect to the client, changes in the interface will do.

Now we have the definition of the service, let's implement it with
the proxy class.

Proxy
The proxy class implements the RemoteUserList interface and, of

course, java.io.Serializable. If the proxy does not implement
java.io.Serializable it will not be able to be register in the FADA
node.

In our example, the proxy class will open a socket to the server for
each action (except getRoomName method) . As you can see, to
implement the proxy it is necessary to know how to communicate
with the server. It is also necessary to know the address and port

J.Noguera 11

FADA tutorial - FADA Examples

where server is listening. This information will be st in the proxy in
the constructor along with the roomName.

An empty constructor is also necessary for serialization proposes.
public class UserListProxy implements RemoteUserList, java.io.Serializable

{

 private String roomName;

 private String ip;

 private int port;

 /**

 * Empty constructor necessary for serialization

 *

 */

 public UserListProxy ()

 {

 /* nop */

 }

 /**

 * Creates a new instance specifying address, name and an extra parameter

 * called roomName defined in register time.

 */

 public UserListProxy (String roomName, String address, int port)

 {

 this.roomName = roomName;

 this.ip = address;

 this.port = port;

 }

}

There are two simple methods without return value: addUser and
removeUser.

 public void addUser(String name)

 {

 send ("A " + name);

 }

 public void removeUser(String name)

 {

 send ("R " + name);

 }

The getList method has to transform the server output to adapt it
to the interface definition. The server will return a separated by “#”
String with usernames. We will change this return value in a string
array.

 public String[] getList()

 {

 String[] response = null;

 int i = 0;

 StringTokenizer namelist = new StringTokenizer(send ("L"), "#", false);

 // If there are results

 if (namelist != null) {

J.Noguera 12

FADA tutorial - FADA Examples

 // Allocate array size for response and fill it

 response = new String [namelist.countTokens()];

 while (namelist.hasMoreTokens()) {

 response[i++] = namelist.nextToken();

 }

 }

 return response;

 }

Finally we have a method called getRoomName that have no relation
with the server. This is an extra known information when the server
registers the proxy in FADA network. We will get this information
stored in the server proxy and no communication with the server will
be needed.

 public String getRoomName()

 {

 return roomName;

 }

Registering the proxy
Finally the server must register the proxy in the FADA network to

make it accessible by the clients. The easy way to do this is to use
the net.fada.toolkit.FadaHelper class.

First of all we need to create a proxy instance. This instance will be
sent to the FADA network and used by clients to access directly to
the server. We must specify the address and the port to the server.

String roomName = “Example do-it-yourself”;

String serverAddress = “my.machine”;

int serverPort = 2727;

UserListProxy proxy = new UserListProxy (roomName, serverAddress, serverPort);

To register a service we will use the register method, located in
FadaHelper class. Let's see it:

public FadaServiceID register(FadaInterface fp,

 java.io.Serializable item,

J.Noguera 13

Proxy implementation

Service Interface

Server Machine

Service
Proxy

getList

register

unregister

getRoomName

FADA tutorial - FADA Examples

 FadaServiceID id,

 java.lang.String[] entries,

 long leasePeriod,

 SecurityWrapper wrapper,

 java.lang.String annotation,

 RenewalEventListener listener)

 throws FadaException,

 java.io.IOException,

 java.lang.NullPointerException,

 java.security.InvalidKeyException

• FadaInterface fp. This is the FADA node proxy in which service
will be registered. When we are using FADA through a WAN it is
necessary to know the address and the port in which the FADA
node is listening. If we are using FADA through a LAN there are
multicast methods to find any of the FADA nodes in it (we will see it
ahead).

• java.io.Serializable item. This is the proxy, the serializable
object to be registered in the node. This is the piece of code used
by clients.

• FadaServiceID id. This is the identifier of the service. The
register method returns a FadaServiceID, we can use this id here
for re-registration purposes. The first time we need to register a
service this parameter can be null.

• java.lang.String[] entries. We can register the service with
some entries to be found by the client. When a client is searching
for a service he can specify the service interface and/or any of the
entries it has been registered with. This is an easy way to
distinguish between different implementations or different
providers of the same interface.

• long leasePeriod. Periodically and automatically the registration
class sends signals to the FADA node which stores the service to
renew it. The leasePeriod is the maximum time passed between
two signals. If signal is not send, the service will be automatically
unregistered from FADA node. It is expressed in milliseconds.

• SecurityWrapper wrapper. We can sign the object with the
security wrapper (we will see it ahead). If no sign is needed null is
possible.

• java.lang.String annotation (a.k.a. codebase). We know that
the proxy class will be registered in a FADA node and later
downloaded by client to be executed, but proxy class and other
classes used by the proxy are not in the client classpath. Server
must publish the codebase (a jar file with the extra classes) usually

J.Noguera 14

FADA tutorial - FADA Examples

over a Web Server. Annotation is the full URL to locate the extra
classes.

• RenewalEventListener listener. If the lease can not be
renewed, this class is called to do something, for example, to re-
register it, send an email to the boss, etc. We will see it ahead.

The first thing we need to do is a FadaInterface, with the node
address.

This code will register the proxy interface created before in the
FADA node located on www.fadanet.org:2002. In the code you can
see how we create a new instance of FadaHelper class with a
FadaLeaseRenewer object as a parameter. This parameter will control
when to send the renew signal. One good practice is not to try to
change this class.

String [] entries = new String [] {"userlist_yourself", "do-it-yourself"};

String codebase = “http://my.server/classes.jar”;

try {

 // Prepare the FadaHelper instance

 FadaHelper helper = new FadaHelper(new FadaLeaseRenewer());

 // register service in a FADA node.

 FadaServiceID id = helper.register(

 new FadaLookupLocator (“www.fadanet.org:2002”).getRegistrar(),

 proxy,

 null,

 entries,

 10000L,

 null,

 codebase,

 null);

}

catch (Exception e) {

 // TODO: Something

}

Codebase parameter is needed because the proxy uses
UserListProxy class and the client needs to find this class and load
it. Codebase points to a .jar file that contains, at least,
UserListProxy class.

The service is registered in the FADA network but... what happens
with the renewal? In this example we have launched the server
before registering the service inside the FADA node. This is good for
to understand the different parts of a FADA architecture but there is a
problem. When register class finish its execution, the lease will not be
sent and and the service will be unregistered.

If it is possible, the easy way is to register the service at the same
time we start up the server. If it is not possible we can do something

J.Noguera 15

FADA tutorial - FADA Examples

else. The register thread must not finish while the server is running.
In our example we know were the server is listening so we can see if
it is running.

// We will wait till server is up. If server is down, a exception is thrown

while (true) {

 Socket s = new Socket (serverAddress, serverPort);

 s.close();

 try {

 Thread.sleep(10000);

 }

 catch (InterruptedException e) { /* nop */ }

}

 Client
Once the proxy has been published, any client can use it. Client

only needs to look for the proxy along the FADA network.

There are some things client needs to know: the location of one
FADA node address, and the name of the interface he wants to use.
Maybe it is necessary to know some entries that the server used to
register the service, specially if there are many proxies implementing
the same interface registered in the FADA network.

To look for a service we will use the static lookup method, located
in FadaHelper class. Let's see it.

public static java.lang.Object[] lookup(FadaInterface fp,

 java.lang.String[] entries,

 FadaServiceID id,

 java.lang.String[] servTypes,

 int maxMatches,

 long timeout,

 java.security.cert.X509Certificate cert)

 throws FadaException,

 java.io.IOException,

 java.lang.ClassNotFoundException,

 java.lang.NullPointerException,

 java.security.InvalidKeyException

• FadaInterface fp. Like in the register method.

• java.lang.String[] entries. Array of entries that we want to use
in the search. Each interface returned will contain all these entries
(AND operation).

• FadaServiceID id. Like in the register method.

• java.lang.String[] servTypes. The name of any interface the
proxy can implement. Each interface returned will implement all
these entries (AND operation).

J.Noguera 16

FADA tutorial - FADA Examples

• int maxMatches. The return value of the lookup method is an
array of proxies. We can specify a maximum of results to be
returned.

• long timeout. As the FADA network can be very wide, we must
indicate the maximum time we want to wait while FADA makes the
search. It is expressed in milliseconds.

• java.security.cert.X509Certificate cert. When a server
registers a service, can attach a certificate. User can perform a
search over the FADA network indicating the certificate trusted by
him. This is the way clients can trust they are executing secure
code.

In our example the interface is named
net.fada.examples.uptoyou.RemoteUserList. We will search for
ten seconds as a maximum and we will not specify any entry. After
obtaining the result array we will take the first ones.

Object[] proxies = FadaHelper.lookup(

fadaUrl,

null,

null,

new String[] { "info.techideas.uptoyou.RemoteUserList" },

1,

10000L);

We can now execute any of the interface methods:
// Cast is needed

RemoteUserList service = (RemoteUserList) proxies[0];

service.register("bob");

String [] list = service.getList();

...

Fadagen scenario
In this second example we have no server nor protocol defined yet.

We will use fadagen to automatically create the server and the proxy.
Once the process will be finished, we will have a server listening on a
port and a proxy that communicates with it using serialization.

It will be more difficult to integrate our server with other clients but
it will be the easiest way for us.

This example implies changes in the server and in the client side.
At the end of the section we will explain how to do this changes
without affecting the client side.

J.Noguera 17

FADA tutorial - FADA Examples

Service interface
The server interface suffers few changes: it has to extend

net.fada.remote.Remote interface and each method needs to throw
a net.fada.remote.RemoteException exception.

public interface RemoteUserListWithStub extends net.fada.remote.Remote

{

 public void addUser (String name) throws net.fada.remote.RemoteException;

 public void removeUser (String name) throws net.fada.remote.RemoteException;

 public String getRoomName () throws net.fada.remote.RemoteException;

 public String [] getList () throws net.fada.remote.RemoteException;

}

Server
To code the server we only need to implement the interface

without thinking of socket or communication. Later we will create the
stub and skeleton classes that will perform remote communication.

Before continuing some words about the stub and the skeleton
classes are necessary. These classes are used by Java to perform a
Remote Method Invocation (RMI). The stub and the skeleton classes
mask the communication protocol between two classes located in
different machines over the net. Both classes are creates
automatically by helper programs. You will find further information at
http://java.sun.com/products/jdk/rmi/

Our server needs to implement the interface defined before and to
extend net.fada.remote.RemoteObject class.

import net.fada.remote.RemoteObject;

public class UserList extends RemoteObject implements RemoteUserListWithStub

{

 private String roomName;

 private Collection names = new ArrayList ();

}

Implementation is now pretty simple. We only need to implement a
simple java class. Notice that we have decided to include roomName
as part of the server.

public void addUser(String name) throws RemoteException

{

 if (!names.contains(name)) {

 names.add(name);

 }

}

public void removeUser(String name) throws RemoteException

{

 names.remove(name);

}

J.Noguera 18

FADA tutorial - FADA Examples

public String getRoomName() throws RemoteException

{

 return roomName;

}

public String[] getList() throws RemoteException

{

 String [] result = new String [names.size()];

 int i = 0;

 for (Iterator it = names.iterator(); it.hasNext();) {

 result [i++] = (String) it.next();

 }

 return result;

}

A constructor is also necessary, it will receive roomName as a
parameter.

public UserList (String roomName)

{

 this.roomName = roomName;

}

Once the server has been coded we will generate stub and
skeleton classes. We will use fadagen.jar library included in FADA
distribution. fadagen.jar library contains a main class that receives
as a parameter the class from which we want to obtain the skeleton
and stub classes. The classes obtained are source files (.java) located
in the same directory where original class file was. These classes
have to be moved, if necessary, and compiled. fada-toolkit.jar is
also necessary to be in the classpath.

java -jar ../lib/fadagen.jar \

-classpath ../lib/fada-toolkit.jar:. \

info.techideas.fadagen.UserList

UserList_Skel.java and UserList_Stub.java have been
created.

Proxy
In the first and easy example of fadagen we will not use a real

proxy. Instead we will use the UserList_Stub class as a proxy. At the
end of this section we will explain how to implement a real proxy that
implies no change in client side.

Registering the proxy
Before registering the server we need to run it. Because we have

extended net.fada.remote.RemoteObject we have an export
method. This method takes an instance of two classes, which are
implementations of the interfaces ServerTransport and

J.Noguera 19

FADA tutorial - FADA Examples

ClientTransport. The FADA software bundle offers a default
implementation for each interface, using HTTP as the transport layer.
The implementation of the transport layer is open, and can be freely
modified by providing a different implementation of the
ServerTransport and ClientTransport interfaces.

ServerTransport receives two parameters: the port to be used by
the server and the endpoint of the service.

Client Transport receives only one parameter, the full URL in which
the server will be listening.

// Some harcoded parameters

String roomName = “Example fadagen”;

String address = “my.machine”; // server Address

int port = 2727; // port Address

String endpoint = “/example/fadagen”;

// Create a server instance

UserList myRegister = new UserList (roomName);

// Create transport classes

ServerTransport st = new ServerTransportImpl (port, address);

ClientTransport ct = new ClientTransportImpl ("http://" + address + “:” +

port + endpoint);

// Return the stub (our proxy)

RemoteStub stub = myRegister.export(st, ct);

At this moment the server is running and we only need to register
the proxy in the FADA network. We will register the proxy with one
entry named “userlist_fadagen”.

// Prepare the FadaHelper instance

FadaHelper helper = new FadaHelper (new FadaLeaseRenewer());

// register service in a FADA node.

FadaServiceID id = helper.register(

new FadaLookupLocator (fadaAddress).getRegistrar(), // where to find a node

(Serializable) stub, // proxy (in this case created with fadagen)

 null, //FadaServiceId (if it was register before for example)

 entries, // entries that help the user to find the service

 10000L, // Renew lease period (in millis)

 null, // SecurityWrapper

 codebase, // codebase where client cant find libraries

 null); // What to do if FADA cannot renew the proxy

J.Noguera 20

FADA tutorial - FADA Examples

Server is now running and the service is registered.

Codebase parameter is needed because the proxy uses
UserList_Stub class and the client needs to find this class and load
it. Codebase points to a .jar file that contains, at least,
UserList_Stub class.

Client
Client is basically the same we explained in the previous example.

There are only few changes to be made:

• The service interface has change so names have to be updated.

• The new interface methods now throw exceptions that can be
caught.

Coding a real proxy
In the previous example we have registered directly the stub class.

This is good enough but, this way, the client have to change his code
because the remote interface has change.

The correct way to do it is to create a proxy class that implements
the original interface. This class receives the stub class as a
parameter and call its methods when necessary. Another advantage
is the possibility of make changes or transformations with the input
parameters or with the return value.

In this new scenario you can see that the RemoteUserListWithStub
interface and the original RemoteUserList interface don't need to
declare the same methods. Proxy class will manage to agree the

J.Noguera 21

Registering the stub

Server Machine

Service

skeleton

Client Machine

Client program

stub

co
mm
un
ic
at
io
n

d
o
w

n
lo

a
d

Machine #2

FADA node

proxy 1

stub
...

Implements
RemoteUserListWithStub and

throws Exceptions

FADA tutorial - FADA Examples

methods using the stub interface. The new proxy implementation will
look like this:

public class UserListProxy

implements net.fada.examples.RemoteUserList, java.io.Serializable

{

 private RemoteUserListWithStub stub;

 private String roomName;

 public UserListProxy () {

 }

 public UserListProxy (RemoteUserListWithStub stub, String roomName) {

 this.stub = stub;

 this.roomName = roomName;

 }

 public void addUser(String name) {

 try {

 stub.addUser(name);

 } catch (RemoteException e) {

 e.printStackTrace();

 }

 }

 ...

}

J.Noguera 22

Registering a new proxy that contains the stub class

Server Machine

Service

skeleton

Machine #2

FADA node

proxy 1

proxy
...

d
o
w

n
lo

a
d

Implements the original
RemoteUserList. No changes

needed.

Client Machine

Client program

proxy

stub

co
m
mu
ni
c
at
io
n

FADA tutorial - FADA Examples

J2ee scenario
In this third example we will place our service inside an Application

Server. We will take advantage of the communication and
configuration improvements that the application server have.

We will do this coding our service in a servlet. This servlet will also
be the service register so we need assure the service will be
registered when the application server will start. The suitable way to
do it will be using the init method to register the service and
modifying the web.xml file to indicate to the Application Server that
we want to load the servlet at the beginning.

As in the previous case the stub and the skeleton classes will be
needed and, also like in the previous case, we can register directly
the stub class implementing RemoteUserListWithStub interface, or
wrap it inside the proxy class than implements the original
RemoteUserList interface.

Service interface
The server interface do not suffer any change. It still has to extend

net.fada.remote.Remote interface and each method needs to throw
a net.fada.remote.RemoteException exception.

public interface RemoteUserListWithStub extends net.fada.remote.Remote

{

 public void register (String name) throws net.fada.remote.RemoteException;

 public void unregister (String name) throws net.fada.remote.RemoteException;

 public String getRoomName () throws net.fada.remote.RemoteException;

 public String [] getList () throws net.fada.remote.RemoteException;

}

J.Noguera 23

Registering a new proxy that contains the stub class

Server Machine

J2EE Servlet Container

Servlet

skeleton

Machine #2

FADA node

proxy 1

proxy
...

d
o
w

n
lo

a
d

Client Machine

Client program

proxy

stub

co
mm
un
ic
at
io
n

FADA tutorial - FADA Examples

Server
The service in now a servlet and needs to extends

FadaHttpServlet. This class extends directly the HttpServlet class,
needed for servlets. It also have some code necessary to perform the
communication between client and server using the HTTP protocol
through the POST method.

POST method is used by FADA so our servlet can only use the GET
method for our proposes and never overwrite the original doPost
method (neither the doService, which affect directly to the doPost
method).

Usually servlets will do nothing when doGet method is executed
and will only attend FADA clients (no Web Server clients). In our
example, nevertheless, when the doGet method is executed, a list of
users is showed in the browser.

public class UserList extends FadaHTTPServlet implements RemoteUserListWithStub

{

 private String roomName;

 private Collection names = new ArrayList ();

 public void init(ServletConfig config) throws ServletException

 {

 ...

 }

 public void doGet(HttpServletRequest request, HttpServletResponse response)

 throws ServletException, IOException

 {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 // Header

 out.println ("<html>Userlist:
<hr>");

 // Print all names

 for (Iterator it = names.iterator(); it.hasNext();) {

 out.println (" - " + it.next() + "
");

 }

 // Footer

 out.println("<hr></html>");

 }

 public void addUser(String name) throws RemoteException

 {

 // Si NO existe, lo guardamos

 if (!names.contains(name)) {

 names.add(name);

 }

 }

 ...

}

J.Noguera 24

FADA tutorial - FADA Examples

Proxy
We will code our proxy wrapping the UserList_Stub class. First

thing is to create UserList_Stub and UserList_Skel classes using
the fadagen.jar library.

java -jar ../lib/fadagen.jar \

-classpath ../lib/fada-toolkit.jar:. \

info.techideas.j2ee.UserList

Once created we can code our proxy class as in the previous
example:

public class UserListProxy

implements net.fada.examples.RemoteUserList, java.io.Serializable

{

 private RemoteUserListWithStub stub;

 private String roomName;

 public UserListProxy ()

 {

 /* nop */

 }

 public UserListProxy (RemoteUserListWithStub stub, String roomName)

 {

 this.stub = stub;

 this.roomName = roomName;

 }

 public void addUser(String name)

 {

 try {

 stub.addUser(name);

 }

 catch (RemoteException e) {

 e.printStackTrace();

 }

 }

 ...

}

Registering the proxy
The best place for registering the service is the init method located

in the servlet. We can access to the configuration variables defined in
the web.xml file. Also in this example, the Fadagen transport will be
used.

public void init(ServletConfig config) throws ServletException

{

 super.init(config);

 String [] entries = new String [] {"userlist_j2ee", "userlist_servlet"};

J.Noguera 25

FADA tutorial - FADA Examples

 // Getting parameters

 String roomName = config.getInitParameter("room_name");

 String fadaAddress = config.getInitParameter("fada_address");

 String servletUrl = config.getInitParameter("end_point");

 String codebase = config.getInitParameter("codebase");

 try {

 ClientTransportImpl trans = new ClientTransportImpl(servletUrl);

 // Create the stub and the proxy

 RemoteUserListWithStub stub =

 (RemoteUserListWithStub) this.export (this, trans);

 UserListProxy proxy = new UserListProxy (stub, roomName);

 // Prepare the FadaHelper instance

 FadaHelper helper = new FadaHelper(new FadaLeaseRenewer());

 // register service into a FADA node.

 FadaServiceID id = helper.register(

 new FadaLookupLocator (fadaAddress).getRegistrar(), // where to find a node

 proxy, // proxy (in this case created with fadagen)

 null, // FadaServiceId (if it was register before for example)

 entries, // entries that help the user to find the service

 10000L, // Renew lease period (in millis)

 null, // SecurityWrapper

 codebase, // codebase where cliend cand find libraries

 null); // What to do if FADA cannot renew the proxy

 System.out.println("proxy was registered into the FADA node");

 }

 catch (Exception e) {

 e.printStackTrace();

 }

}

Some changes have to be done in the web.xml file. We will specify
the servlet name and the init parameters.

<servlet>

 <servlet-name>UserList</servlet-name>

 <servlet-class>net.fada.examples.j2ee.UserList</servlet-class>

 <init-param>

 <param-name>room_name</param-name>

 <param-value>ROOM userlist J2EE</param-value>

 </init-param>

 <init-param>

 <param-name>fada_address</param-name>

 <param-value>localhost:2002</param-value>

 </init-param>

 <init-param>

 <param-name>end_point</param-name>

 <param-value>http://localhost:8080/tutorial/userlist</param-value>

 </init-param>

 <init-param>

 <param-name>codebase</param-name>

 <param-value>http://localhost:8080/tutorial/tutorial_classes.jar</param-value>

 </init-param>

 <load-on-startup>1</load-on-startup>

</servlet>

J.Noguera 26

FADA tutorial - FADA Examples

<servlet-mapping>

 <servlet-name>UserList</servlet-name>

 <url-pattern>/userlist</url-pattern>

</servlet-mapping>

Client
Client is the same of the first example because we used a proxy

that implements the original service interface.

After a few tests we can check the service with a browser calling
the servlet without parameters.

J.Noguera 27

FADA tutorial - FADA nodes over a LAN

FADA nodes over a LAN

As we have seen, clients who are searching for a service in the
FADA network need, to know the address of, at least, one FADA node
and the port in with it is running.

If our FADA network is running in a LAN (or it is running in a WAN
but we know one of the nodes is in our LAN network), we can use
multi-cast technology to discover it.

There are two helper classes that will help us to do the discovering:
DiscoveryListener and FadaDiscovery, both located in the
net.fada.toolkit package.

DiscoveryListener is an interface with one only method to be
implemented named discovered. This method is called when a new
node is found.

FadaDiscovery is a helper class to which so many
DiscoveryListener implementation can be added. When a new
DiscoveryListener implementation is added, a new multi-cast
signal is sent over the net.

Notice that you can specify in the FADA node configuration file if it
must be listening for multi-cast signal or not. Nodes not listening will
not be discovered at all.

Once the node has been discovered the process continues in the
habitual way.

public class ClientLan implements DiscoveryListener

{

 static int nodes = 0;

 public static void main(String[] args)

 {

 // New FadaDiscovery class

 FadaDiscovery fadaLan = new FadaDiscovery ();

 try {

 // New DiscoveryListener Implementation

 ClientLan me = new ClientLan ();

 // Send a multi-cast signal

 fadaLan.addDiscoveryListener(me);

 // Waiting...

 System.out.println("waiting 10 seconds...");

 Thread.sleep(10000);

 System.out.println("finished. " + nodes + " nodes was/were found");

 }

 catch (IOException e) {

 e.printStackTrace();

J.Noguera 28

FADA tutorial - FADA nodes over a LAN

 }

 catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

 /**

 * @see net.fada.toolkit.DiscoveryListener#discovered(FadaLookupLocator)

 */

 public void discovered(FadaLookupLocator locator)

 {

 nodes++;

 System.out.println("FADA node found: " +

 locator.getHost() + ":" + locator.getPort());

 }

}

As you can see, discover method is called with a
FadaLookupLocator as a parameter. This parameter contains all
information about the node.

J.Noguera 29

FADA tutorial - Renewal Event

Renewal Event

When a proxy is registered in a FADA node you can specify what to
do if the renewal fails. Usually you need to find another FADA node or
try to register in the same FADA node again. Sometimes we will not
want to re-register the node but write the failure in a log file, send an
email or write a entry in the Database.

RenewalEventListener interface have to be implemented and
passed as a parameter to the register method. It is located in the
net.fada.directory.tool package.

We have change the Fadagen Register class to catch the renewal
event and try to re-register the proxy if it fails. First of all, we need to
implement RenewalEventListener and to keep some variables as a
member variables. The static main method now create a class
instance. Some code has been replaced by “...” characters.

public class RegisterFadagen implements RenewalEventListener

{

 // Variables needed

 private FadaServiceID id;

 private UserListProxy proxy;

 private String codebase;

 private FadaHelper helper;

 private String fadaAddress;

 public static void main(String[] arg) {

 RegisterFadagen register = new RegisterFadagen ();

 cp.register(arg);

 }

 public void register (String[] arg) {

 ...

 // Prepare the FadaHelper instance

 helper = new FadaHelper(new FadaLeaseRenewer());

 // register service into a FADA node.

 id = helper.register(

 new FadaLookupLocator (fadaAddress).getRegistrar(), // where to find a node

 proxy, // proxy (in this case created with fadagen)

 null, // FadaServiceId (if it was register before for example)

 entries, // entries that help the user to find the service

 10000L, // Renew lease period (in millis)

 null, // SecurityWrapper

 codebase // codebase where cliend cand find libraries

 this); // What to do if FADA cannot renew the proxy

 ...

 }

 /**

 * @see net.fada.directory.tool.RenewalEventListener#eventOccured(RenewalEvent)

J.Noguera 30

FADA tutorial - Renewal Event

 */

 public void eventOccured(RenewalEvent event)

 {

 System.out.println("reregistering... ");

 try {

 id = helper.register(

 new FadaLookupLocator (fadaAddress).getRegistrar(),

 proxy, // proxy (in this case created with fadagen)

 id, // FadaServiceId (if it was register before for example)

 new String [] {"re-registered"}, // entries

 10000L, // Renew lease period (in millis)

 null, // SecurityWrapper

 codebase, // codebase where cliend cand find libraries

 this);

 } catch (Exception e) {

 e.printStackTrace();

 }

 }

}

We store the FadaServiceID returned in the first register to use it if
a second (or third, or fourth,...) register is necessary. We are doing
this to maintain registration consistency. This is a good practice even
though it is not necessary.

J.Noguera 31

FADA tutorial - Security Wrapper

Security Wrapper

Security can be added to our registered proxies. X509 certificates
can be registered within the proxy in the FADA node. These
certificates indicate who registered the proxy and who is the
certification authority (CA). Clients can use this information to
retrieve only the services they trust.

When the client performs the lookup operation, he can specify any
X509Certificate to find with. If no Certificate is send, all proxies that
match with interface and entries are retrieved. If a Certificate is used,
only proxies with the appropriate certificate are retrieved.

Usually two certificates are necessary at registration time: the
target certificate and the certification authority one. The target
PrivateKey is also necessary to create a hash value that is attached
to the proxy and later checked by the client.

We can modify our Fadagen example to create a SecurityWrapper.
Keys and certificates are stored in the /tmp folder.

// Read the private key from a file

byte [] buffer = new byte[2048];

FileInputStream fis = new FileInputStream ("/tmp/cert.key");

int len = fis.read(buffer);

BASE64Decoder dec = new BASE64Decoder ();

byte [] bkey = dec.decodeBuffer(new String (buffer, 0, len));

SecurityWrapper sw = null;

try {

 // Gets the PrivateKey class

 KeyFactory keyFactory = KeyFactory.getInstance("RSA");

 PrivateKey priKey = keyFactory.generatePrivate(new PKCS8EncodedKeySpec (bkey));

 // Get both certificates

 Certificate targetCert = new X509CertImpl (new FileInputStream ("/tmp/cert.pem"));

 Certificate caCert = new X509CertImpl (new FileInputStream ("/tmp/cacert.pem"));

 // Create the SecurityCertificate

 sw = new SecurityWrapper (priKey, new Certificate [] { targetCert, caCert});

} catch (Exception e) {

 e1.printStackTrace();

}

...

 // register service in a FADA node.

 FadaServiceID id = helper.register(

 new FadaLookupLocator (“www.fadanet.org:2002”).getRegistrar(),

 proxy,

 null,

 entries,

 10000L,

 null,

 codebase,

J.Noguera 32

FADA tutorial - Security Wrapper

 sw); // The security wrapper

...

Similar code is executed by the client to read the certificate and
later it is used in the lookup. In this case the certificate is explicitly a
X509Certificate.

X509Certificate cert = null;

try {

 // Read the X509Certificate

 cert = new X509CertImpl (new FileInputStream ("/tmp/cacert.pem");

} catch (Exception e1) {

 e1.printStackTrace();

}

J.Noguera 33

FADA tutorial - Annex A

Annex A

Client and Service interface

Client
/*

 * Created on 15-jun-2004

 *

 * This file is part of the FADA tutorial

 * www.fadanet.org

 */

package net.fada.examples;

import java.io.IOException;

import java.security.InvalidKeyException;

import net.fada.FadaException;

import net.fada.directory.FadaLookupLocator;

import net.fada.toolkit.FadaHelper;

/**

 * Generic client to execute any proxy that implements net.fada.examples.RemoteUserList

 *

 * @author bob (javier.noguera@techideas.info)

 */

public class Client

{

 public static void main(String[] arg)

 {

 // check if we have enough args

 if (arg.length < 2) {

 help ();

 return;

 }

 // getting arguments

 String fadaAddress = arg[0];

 String action = arg[1];

 String parameter = null;

 // Try to get optional parámeters

 if (arg.length > 2) {

 parameter = arg[2];

 }

 // Prepare the lookup request parameters

 String[] interfaces = new String[] { "net.fada.examples.RemoteUserList" };

 // Perform the lookup procedure

 Object[] proxies;

 try {

 proxies = FadaHelper.lookup(

 new FadaLookupLocator (fadaAddress).getRegistrar(), // where to find a node

 null, // entries to search for

 null, // FadaServiceId

 interfaces, // interfaces to search for

 1, // Max results we want to search for

 10000L, // Search expiration times (in millis)

 null // Certificate (if needed)

);

 // Take one of the returned service proxies

 if (proxies.length == 0) {

 System.out.println (" Proxy do not found :(");

 return;

 }

J.Noguera 34

FADA tutorial - Annex A

 // Declare a variable to cast the service proxy onto

 net.fada.examples.RemoteUserList service = (net.fada.examples.RemoteUserList) proxies[0];

 // Write the command to be executed

 System.out.println(" Executing action: " + action + " " + parameter);

 if ("add".equals (action)) {

 service.addUser (parameter);

 }

 else if ("remove".equals(action)) {

 service.removeUser(parameter);

 }

 else if ("list".equals(action)) {

 String [] list = service.getList();

 for (int i = 0; i < list.length; i++) {

 System.out.println("\t" + list[i]);

 }

 }

 else if ("name".equals(action)) {

 System.out.println(service.getRoomName());

 }

 }

 catch (FadaException e) {

 e.printStackTrace();

 }

 catch (IOException e) {

 e.printStackTrace();

 }

 catch (ClassNotFoundException e) {

 e.printStackTrace();

 }

 catch (NullPointerException e) {

 e.printStackTrace();

 }

 catch (InvalidKeyException e) {

 e.printStackTrace();

 }

 }

 /**

 * Write help to the standard output

 *

 */

 private static void help ()

 {

 System.out.println("FADA client");

 System.out.println("Usage");

 System.out.println("java net.fada.examples.Client fada_url action [parameter]");

 System.out.println("\tfada_address: address and port to the fada node");

 System.out.println("\taction: action to do (add, remove, list or name)");

 System.out.println("\tparameter: parameter needed by the action (if applicable)");

 System.out.println("\nie. java net.fada.examples.j2ee.Client localhost:2002 add bob");

 System.out.println(" java net.fada.examples.j2ee.Client localhost2002 remove bob");

 System.out.println(" java net.fada.examples.j2ee.Client localhost2002 list");

 System.out.println(" java net.fada.examples.j2ee.Client localhost2002 name");

 }

}

RemoteUserList
/*

 * Created on 14-jun-2004

 *

 * This file is part of the FADA tutorial

 * www.fadanet.org

 */

package net.fada.examples;

/**

 * Defines the methods that have to be implemented by the proxy to acces to the server

 * service.

J.Noguera 35

FADA tutorial - Annex A

 *

 * This Interface have to be into the client CLASSPATH. The proxy that implements this

 * interface will be downloaded from a FADA node by the client.

 *

 * @author bob (javier.noguera@techideas.info)

 */

public interface RemoteUserList

{

 /**

 * Registers one <code>name</code> into the server. If the username is already registered,

 * do nothing

 *

 * @param name username

 */

public void addUser (String name);

 /**

 * Unregister one <code>name</code> into the server. If the username is not registered,

 * do nothing.

 *

 * @param name username

 */

public void removeUser (String name);

 /**

 * Returns the <code>roomName</code> of the proxy. Nothing to do with the server.

 *

 * @param name username

 */

public String getRoomName ();

 /**

 * Returns the registered user names array located in the server.

 *

 * @return usernames array

 */

public String [] getList ();

}

J.Noguera 36

FADA tutorial - Annex A

Do-it-yourself

Userlist
/*

 * Created on 14-jun-2004

 *

 * This file is part of the FADA tutorial

 */

package net.fada.examples.uptoyou;

import java.io.IOException;

import java.net.ServerSocket;

import java.net.Socket;

import java.util.ArrayList;

import java.util.Collection;

import java.util.Iterator;

/**

 * Implements a simple server with a simple communication protocol.

 *

 * This server allow external programs to add or remove users from an internal list.

 * It also prints a list of registered users to the standard output.

 *

 * All input messages begin with one character: (A)dd, (R)emove, (L)ist or (Q)uit and

 * their length has to be, as a maximun, 20 characters long.

 *

 * Bellow you can see the list of all messages that can be processed by the server:

 * A username: add the username to the list if it does not exist yet.

 * R username: remove the username form the list if it exists.

 * L : prints a list with registered usernames to standard output.

 * Q : quit.

 *

 * To run the server you only need to run this class. If no parameter is passed the server will listen

 * on the default port (2727).

 *

 * @author bob

 */

public class UserList extends Thread

{

 private static final int DEFAULT_PORT = 2727;

 private int port;

 private Collection names = new ArrayList ();

/**

 * Creates a server instance that will listen on <code>port</code>

 *

 * @param port listenig port

 */

public UserList (int port)

{

 this.port = port;

}

 /**

 * @see java.lang.Thread#run()

 *

 */

 public void run ()

 {

 System.out.println ("UserList server started...");

 try {

 // Initialize ServerSocket

 ServerSocket ssocket = new ServerSocket (port);

 boolean end = false; // Do not end yet.

 byte [] command = new byte [20];

 while (!end) {

J.Noguera 37

FADA tutorial - Annex A

 // Wait for someone

 Socket client = ssocket.accept();

 // Read command

 int len = client.getInputStream().read(command);

 if (len < 0) {

 client.getOutputStream().close ();

 continue;

 }

 System.out.println("command: " + new String (command, 0, len));

 // Get the argument (if exists)

 String argument = new String (command, 1, len -1).trim();

 // Execute the apropiate action

 switch ((int) command[0]) {

 case 'A':

 // Add the username to the Collection

 // Only if name do not exists yet

 if ((argument != null) && (!names.contains(argument))) {

 names.add(argument);

 }

 break;

 case 'R':

 // Remove the username form de Collection

 names.remove(new String (command, 1, len -1).trim());

 break;

 case 'L':

 // List the registered user list

 StringBuffer response = new StringBuffer ();

 // Simbol '#' is the separator token

 for (Iterator it = names.iterator(); it.hasNext();) {

 response.append(it.next() + "#");

 }

 // Write the list and send results

 System.out.println("USER LIST: " + response);

 client.getOutputStream().write(response.toString().getBytes());

 break;

 case 'Q':

 // Stop the server

 end = true;

 break;

 }

 // Close client socket.

 client.getOutputStream().close ();

 }

 }

 catch (IOException e) {

 e.printStackTrace();

 }

 System.out.println ("UserList server finished!");

 }

 /**

 * Main method with parameters needed.

 * Parameters:

 * - arg[0]: OPTIONAL. listening port (default 2727)

 *

 * @param arg arguments

 */

 public static void main (String[] arg)

 {

 // Allways print help

 help ();

J.Noguera 38

FADA tutorial - Annex A

 // Get port if param exists

 int port = DEFAULT_PORT;

 if (arg.length > 0) {

 try {

 port = Integer.parseInt(arg[0]);

 }

 catch (NumberFormatException e) { /* nop */ }

 }

 // Start the server

 UserList myRegister = new UserList (DEFAULT_PORT);

 myRegister.start();

 // Do nothing untill someone send 'Q' throw socket or CTRL+C key is pressed.

 }

 /**

 * Writes help to the standard output

 *

 */

 private static void help ()

 {

 System.out.println("Register a sevice into a FADA node (J2EE version)");

 System.out.println("Usage");

 System.out.println("java net.fada.examples.j2ee.Register [port]");

 System.out.println("\tport: listening port (default port is 2727)");

 System.out.println("\nie. java net.fada.examples.j2ee.Register 2727\n");

 }

}

UserListProxy
/*

 * Created on 15-jun-2004

 *

 * This file is part of the FADA tutorial

 */

package net.fada.examples.uptoyou;

import java.io.IOException;

import java.net.Socket;

import java.net.UnknownHostException;

import java.util.StringTokenizer;

import net.fada.examples.RemoteUserList;

/**

 * This proxy will be registered into a FADA node and will enable the comunication

 * between the client an the server (UserList in this case).

 *

 * This proxy knows how to "speak" with the server, where it is and where it is listening.

 * This class implements the apropiate protocol to send commands and recive information

 * from the server. The client will download this proxy form a FADA node and automatically

 * can communicate with the server not knowing where the server is or what the communication

 * protocol is.

 *

 * In this case the <code>UserListProxy</code> class will communicate with the server via socket.

 *

 * @author bob

 */

public class UserListProxy implements RemoteUserList, java.io.Serializable

{

 private String roomName;

 private String ip;

 private int port;

 /**

 * Empty constructor necessary for serialization

 *

 */

 public UserListProxy ()

 {

J.Noguera 39

FADA tutorial - Annex A

 /* nop */

 }

 /**

 * Creates a new instance to be registered into a FADA node, specifying the

 * <code>address</code> and the <code>port</code> where the server will be waiting.

 * <code>roomName</code> is an internal identifier not used in the communication

 * process.

 *

 * @param roomName

 * @param address

 * @param port

 */

 public UserListProxy (String roomName, String address, int port)

 {

 this.roomName = roomName;

 this.ip = address;

 this.port = port;

 }

 /**

 * Communicates directly with the server and sends the appropiate command

 * to register the <code>name</code>

 *

 * @param name username

 */

 public void addUser(String name)

 {

 send ("A " + name);

 }

 /**

 * Communicates directly with the server and sends the appropiate command

 * to unregister the <code>name</code>

 *

 * @param name username

 */

 public void removeUser(String name)

 {

 send ("R " + name);

 }

 /**

 * Gets the <code>roomName</code>. This method does not need a communication

 * whith the server.

 *

 * @param name username

 */

 public String getRoomName()

 {

 return roomName;

 }

 /**

 * Communicates directly with the server and sends the appropiate command

 * to get the registered user list

 *

 * @return usernames array.

 */

 public String[] getList()

 {

 String[] response = null;

 int i = 0;

 StringTokenizer namelist = new StringTokenizer(send ("L"), "#", false);

 // If there are results

 if (namelist != null) {

 // Allocate array size for response and fill it

 response = new String [namelist.countTokens()];

 while (namelist.hasMoreTokens()) {

 response[i++] = namelist.nextToken();

 }

 }

J.Noguera 40

FADA tutorial - Annex A

 return response;

 }

 /**

 * Sends a command to the server via socket.

 *

 * @param text command to send

 * @return server response or null if there are no response.

 */

 private String send (String text)

 {

 StringBuffer response = new StringBuffer ();

 try {

 // Conectamos y escribimos

 Socket client = new Socket (ip, port);

 client.getOutputStream().write(text.getBytes());

 // Esperamos respuesta si la hay

 int c = 0;

 while ((c = client.getInputStream().read()) > -1) {

 response.append((char) c);

 }

 client.close();

 }

 catch (UnknownHostException e) {

 e.printStackTrace();

 }

 catch (IOException e) {

 e.printStackTrace();

 }

 return response.toString();

 }

 public static void main (String [] arg)

 {

 UserListProxy p = new UserListProxy ("hola", "B", 3);

 p.getRoomName();

 }

}

Register
/*

 * Created on 15-jun-2004

 *

 * This file is part of the FADA tutorial

 */

package net.fada.examples.uptoyou;

import java.io.IOException;

import java.net.Socket;

import java.security.InvalidKeyException;

import net.fada.FadaException;

import net.fada.directory.FadaLookupLocator;

import net.fada.directory.tool.FadaLeaseRenewer;

import net.fada.directory.tool.FadaServiceID;

import net.fada.toolkit.FadaHelper;

/**

 * Regiters a proxy (net.fada.examples.uptoyou.UserListProxy) into a FADA node using FadaHelper

 * classes.

 *

 * The proxy will be registered with the entries "userlist_yourself" and "make-it-yourself" that

 * and with the roomname "ROOM UserList make-it-yourself"

 *

 * @author bob

J.Noguera 41

FADA tutorial - Annex A

 */

public class Register

{

 /**

 * Main method with parameters needed.

 * Parameters:

 * - arg[0]: fada node address "ip:port" (ie. "127.0.0.1:2002")

 * - arg[1]: server addresss. The server have to be running (ie. "my.machine")

 * - arg[2]: server listener port. Port in which the server is listening (ie. 2727)

 * - arg[3]: OPTIONAL. Full url to the codebase (ie. "http://my.machine/example/classes.jar")

 *

 * if no arguments are supplied, help is send to the standard output.

 *

 * @param arg arguments

 */

 public static void main(String[] arg)

 {

 String roomName = "ROOM UserList make-it-yourself";

 String [] entries = new String [] {"userlist_yourself", "make-it-yourself"};

 // check if there are have enough args

 if (arg.length < 3) {

 help ();

 return;

 }

 // getting arguments

 String fadaAddress = arg[0];

 String serverAddress = arg[1];

 int serverPort = 0;

 try {

 serverPort = Integer.parseInt(arg[2]);

 }

 catch (NumberFormatException e) {

 System.out.println ("server_port have to be a number!!");

 System.out.println (arg[2] + "is not a number");

 help ();

 return;

 }

 String codebase = null;

 if (arg.length > 3) {

 codebase = arg[3];

 }

 // Create the proxy instance that will be registered into the

 UserListProxy proxy = new UserListProxy (roomName, serverAddress, serverPort);

 try {

 // Prepare the FadaHelper instance

 FadaHelper helper = new FadaHelper(new FadaLeaseRenewer());

 // register service into a FADA node.

 FadaServiceID id = helper.register(

 new FadaLookupLocator (fadaAddress).getRegistrar(), // where to find a node

 proxy, // proxy (in this case created with fadagen)

 null, // FadaServiceId (if it was register before for example)

 entries, // entries that help the user to find the service

 10000L, // Renew lease period (in millis)

 null, // SecurityWrapper

 codebase, // codebase where cliend cand find libraries

 null); // What to do if FADA cannot renew the proxy

 System.out.println("proxy " + proxy.getClass() + " was registered into the FADA node");

 // We will wait till server is up

 int k = 0;

 while (true) {

 Socket s = new Socket (serverAddress, serverPort);

 //System.out.println(k++);

 s.close();

 try {

 Thread.sleep(10000);

 }

 catch (InterruptedException e1) {

 e1.printStackTrace();

J.Noguera 42

FADA tutorial - Annex A

 }

 }

 }

 catch (FadaException e) {

 e.printStackTrace();

 }

 catch (IOException e) {

 e.printStackTrace();

 }

 catch (NullPointerException e) {

 e.printStackTrace();

 }

 catch (InvalidKeyException e) {

 e.printStackTrace();

 }

 catch (ClassNotFoundException e) {

 e.printStackTrace();

 }

 }

 /**

 * Write help to the standard output

 *

 */

 private static void help ()

 {

 System.out.println("Register a sevice into a FADA node (MAKE-IT-YOURSELF version)");

 System.out.println("Usage");

 System.out.println("java net.fada.examples.j2ee.Register fada_url server_address server_port [codebase]");

 System.out.println("\tfada_address: address and port to the fada node in the \"ip:port\" format");

 System.out.println("\tserver_address: name or ip to the server");

 System.out.println("\tserver_port: port to the server");

 System.out.println("\tcodebase: full url to the codebase");

 System.out.println("\nie. java net.fada.examples.j2ee.Register 127.0.0.1:2002 my.machine 2727
http://my.machine/example/classes.jar\n");

 }

}

J.Noguera 43

FADA tutorial - Annex A

Fadagen

UserRemoteListWithStub
/*

 * Created on 15-jun-2004

 *

 * This file is part of the FADA tutorial

 * www.fadanet.org

 */

package net.fada.examples.fadagen;

/**

 * Defines the methods to be implemented by fadagen library for communication.

 * This interface will be used by fadagen library to create stub and skeleton clases.

 *

 * There is one big diference between this class and <code>RemoteUserList<code> class.

 * This difference is that this interface defines the service (in the server side), not the

 * proxy. This is why <code>getRoomName</code> method is not defined, because roomName

 * is not a server variable (it is a proxy variable).

 *

 * @author bob (javier.noguera@techideas.info)

 */

public interface RemoteUserListWithStub extends net.fada.remote.Remote

{

 /**

 * Registers one <code>name</code> into the server. If the username is already registered,

 * do nothing

 *

 * @param name username

 */

 public void addUser (String name) throws net.fada.remote.RemoteException;

 /**

 * Unregister one <code>name</code> into the server. If the username is not registered,

 * do nothing.

 *

 * @param name username

 */

 public void removeUser (String name) throws net.fada.remote.RemoteException;

 /**

 * Returns the registered user names array located in the server.

 *

 * @return usernames array

 */

 public String [] getList () throws net.fada.remote.RemoteException;

}

UserList
/*

 * Created on 15-jun-2004

 *

 * This file is part of the FADA tutorial

 * www.fadanet.org

 */

package net.fada.examples.fadagen;

import net.fada.remote.RemoteObject;

import java.util.ArrayList;

import java.util.Collection;

import java.util.Iterator;

import net.fada.remote.RemoteException;

/**

 * Implements the server interface.

 *

 * This class will run as server. It is needed to tun fadagen to generate a stub and

J.Noguera 44

FADA tutorial - Annex A

 * a skeleton for it.

 *

 * Listening port will be supplied just before trying to register it in the FADA node.

 *

 * @author bob (javier.noguera@techideas.info)

 */

public class UserList extends RemoteObject implements RemoteUserListWithStub

{

 private Collection names = new ArrayList ();

 /**

 * Adds <code>name</code> to the registered users list.

 *

 * @param name any name

 */

 public void addUser(String name) throws RemoteException

 {

 // Only if it does not exists

 if (!names.contains(name)) {

 names.add(name);

 } }

 /**

 * Removes <code>name</code> from the registered user list.

 *

 * @param name any name

 */

 public void removeUser(String name) throws RemoteException

 {

 names.remove(name);

 }

 /**

 * Gets a registered user names array.

 *

 * @return usernames array

 */

 public String[] getList() throws RemoteException

 {

 // Allcate the array size

 String [] result = new String [names.size()];

 int i = 0;

 // Get all names in the Collection

 for (Iterator it = names.iterator(); it.hasNext();) {

 result [i++] = (String) it.next();

 }

 return result;

 }

}

UserListProxy
/*

 * Created on 15-jun-2004

 *

 * This file is part of the FADA tutorial

 * www.fadanet.org

 */

package net.fada.examples.fadagen;

import net.fada.remote.RemoteException;

/**

 * This proxy will be registered into a FADA node and will enable the comunication

 * between the client an the server (UserList in this case).

 *

 * This proxy knows how to "speak" with the server, where it is and where it is listening.

 * This class implements the apropiate protocol to send commands and recive information

 * from the server. The client will download this proxy form a FADA node and automatically

J.Noguera 45

FADA tutorial - Annex A

 * can communicate with the server not knowing where the server is or what the communication

 * protocol is.

 *

 * In this case the <code>UserListProxy</code> class will communicate with the server via socket.

 *

 * @author bob (javier.noguera@techideas.info)

 */

public class UserListProxy implements net.fada.examples.RemoteUserList, java.io.Serializable

{

 private RemoteUserListWithStub stub;

 private String roomName;

 /**

 * Empty constructor necessary for serialization

 *

 */

 public UserListProxy ()

 {

 /* nop */

 }

 /**

 * Creates a new instance to be registered into a FADA node, specifying the

 * <code>address</code> and the <code>port</code> where the server will be waiting.

 * <code>roomName</code> is an internal identifier not used in the communication

 * process.

 *

 * @param roomName

 * @param address

 * @param port

 */

 public UserListProxy (RemoteUserListWithStub stub, String roomName)

 {

 this.stub = stub;

 this.roomName = roomName;

 }

 /**

 * Communicates directly with the server and sends the appropiate command

 * to register the <code>name</code>

 *

 * @param name username

 */

 public void addUser(String name)

 {

 try {

 stub.addUser(name);

 } catch (RemoteException e) {

 e.printStackTrace();

 }

 }

 /**

 * Communicates directly with the server and sends the appropiate command

 * to unregister the <code>name</code>

 *

 * @param name username

 */

 public void removeUser(String name)

 {

 try {

 stub.removeUser (name);

 } catch (RemoteException e) {

 e.printStackTrace();

 }

 }

 /**

 * Gets the <code>roomName</code>. This method does not need a communication

 * whith the server.

 *

 * @param name username

 */

 public String getRoomName()

J.Noguera 46

FADA tutorial - Annex A

 {

 return roomName;

 }

 /**

 * Communicates directly with the server and sends the appropiate command

 * to get the registered user list

 *

 * @return usernames array.

 */

 public String[] getList()

 {

 String[] response = null;

 try {

 response = stub.getList();

 } catch (RemoteException e) {

 e.printStackTrace();

 }

 return response;

 }

}

RegisterFadagen
/*

 * Created on 15-jun-2004

 *

 * This file is part of the FADA tutorial

 * www.fadanet.org

 */

package net.fada.examples.fadagen;

import java.io.IOException;

import java.security.InvalidKeyException;

import net.fada.FadaException;

import net.fada.directory.FadaLookupLocator;

import net.fada.directory.tool.FadaLeaseRenewer;

import net.fada.directory.tool.FadaServiceID;

import net.fada.toolkit.FadaHelper;

import net.fada.transport.ClientTransport;

import net.fada.transport.ClientTransportImpl;

import net.fada.transport.ServerTransport;

import net.fada.transport.ServerTransportImpl;

/**

 * Register a service into a FADA node.

 *

 * This code is part of an example in which:

 * - The server is a stand-alone class converted into server by <code>fadagen libraries</code>

 * - The communication with the servlet is done with <i>fadagen</i>

 *

 * @author bob (javier.noguera@techideas.info)

 */

public class RegisterFadagen

{

 /**

 * Main method with parameters needed.

 * Parameters:

 * - arg[0]: fada node address "ip:port" (ie. "127.0.0.1:2002")

 * - arg[1]: full url to the servlet will be listening (ie. "http://my.machine/example/j2ee")

 * - arg[2]: OPTIONAL. Full url to the codebase (ie. "http://my.machine/example/classes.jar")

 * - arg[3]: OPTIONAL. Endpoint of the server. Default value is /fadagen

 * - arg[4]: OPTIONAL. Server port. Default value is 2727

 *

 * if no arguments are supplied, help is send to the standard output.

 *

 * @param arg arguments

 */

 public static void main(String[] arg)

 {

J.Noguera 47

FADA tutorial - Annex A

 String roomName = "ROOM UserList fadagen";

 String [] entries = new String [] {"userlist_fadagen", "fadagen_userlist"};

 String endpoint = "/fadagen/register";

 int port = 2729;

 // check if we have enough args

 if (arg.length < 2) {

 help ();

 return;

 }

 // getting arguments

 String fadaAddress = arg[0];

 String serverIp = arg[1];

 String codebase = null;

 // Try to get optional parámeters

 if (arg.length > 2) {

 codebase = arg[2];

 }

 if (arg.length > 3) {

 endpoint = arg[3];

 }

 if (arg.length > 4) {

 try {

 port = Integer.parseInt(arg[4]);

 }

 catch (NumberFormatException e) { /* nop */}

 }

 try {

 // Ejecutamos el servidor

 UserList myRegister = new UserList ();

 // Transporte

 ServerTransport st = new ServerTransportImpl (port, endpoint);

 ClientTransport ct = new ClientTransportImpl ("http://" + serverIp + ":" + port + endpoint);

 // Create the stub and the proxy

 RemoteUserListWithStub stub = (RemoteUserListWithStub) myRegister.export (st, ct);

 UserListProxy proxy = new UserListProxy (stub, roomName);

 // Prepare the FadaHelper instance

 FadaHelper helper = new FadaHelper(new FadaLeaseRenewer());

 // register service into a FADA node.

 FadaServiceID id = helper.register(

 new FadaLookupLocator (fadaAddress).getRegistrar(), // where to find a node

 proxy, // proxy (in this case created with fadagen)

 null, // FadaServiceId (if it was register before for example)

 entries, // entries that help the user to find the service

 10000L, // Renew lease period (in millis)

 null, // SecurityWrapper

 codebase, // codebase where cliend cand find libraries

 null); // What to do if FADA cannot renew the proxy

 System.out.println("proxy " + stub.getClass() + " was registered into the FADA node");

 }

 catch (FadaException e) {

 e.printStackTrace();

 }

 catch (IOException e) {

 e.printStackTrace();

 }

 catch (NullPointerException e) {

 e.printStackTrace();

 }

 catch (ClassNotFoundException e) {

 e.printStackTrace();

 }

 catch (InstantiationException e) {

 e.printStackTrace();

 }

 catch (IllegalAccessException e) {

J.Noguera 48

FADA tutorial - Annex A

 e.printStackTrace();

 }

 catch (InvalidKeyException e) {

 e.printStackTrace();

 }

 }

 /**

 * Write help to the standard output

 *

 */

 private static void help ()

 {

 System.out.println("Register a sevice into a FADA node (J2EE version)");

 System.out.println("Usage");

 System.out.println("java net.fada.examples.j2ee.Register fada_url server_ip [codebase] [endpoint [port]]
");

 System.out.println("\tfada_address: address and port to the fada node");

 System.out.println("\tserver_address: address of the server to be found by others computers (without
port)");

 System.out.println("\tcodebase: full url to the codebase");

 System.out.println("\tendpoint: default endpoint is /fadagen");

 System.out.println("\tport: default port is 2727");

 System.out.println("\nie. net.fada.examples.j2ee.Register 127.0.0.1:2002 81.91.102.203
http://my.machine/example/classes.jar\n");

 }

}

j2ee

UserRemoteListWithStub
/*

 * Created on 15-jun-2004

 *

 * This file is part of the FADA tutorial

 * www.fadanet.org

 */

package net.fada.examples.j2ee;

/**

 * Defines the methods to be implemented by fadagen library for communication.

 * This interface will be used by fadagen library to create stub and skeleton clases.

 *

 * @author bob (javier.noguera@techideas.info)

 */

public interface RemoteUserListWithStub extends net.fada.remote.Remote

{

 /**

 * Registers one <code>name</code> into the server. If the username is already registered,

 * do nothing

 *

 * @param name username

 */

 public void addUser (String name) throws net.fada.remote.RemoteException;

 /**

 * Unregister one <code>name</code> into the server. If the username is not registered,

 * do nothing.

 *

 * @param name username

 */

 public void removeUser (String name) throws net.fada.remote.RemoteException;

 /**

 * Returns the registered user names array located in the server.

 *

 * @return usernames array

 */

 public String [] getList () throws net.fada.remote.RemoteException;

}

J.Noguera 49

FADA tutorial - Annex A

UserList
/*

 * Created on 15-jun-2004

 *

 * This file is part of the FADA tutorial

 * www.fadanet.org

 */

package net.fada.examples.j2ee;

import java.io.IOException;

import java.io.PrintWriter;

import java.security.InvalidKeyException;

import java.util.ArrayList;

import java.util.Collection;

import java.util.Iterator;

import javax.servlet.ServletConfig;

import javax.servlet.ServletException;

import javax.servlet.http.HttpServletRequest;

import javax.servlet.http.HttpServletResponse;

import net.fada.FadaException;

import net.fada.directory.FadaLookupLocator;

import net.fada.directory.tool.FadaLeaseRenewer;

import net.fada.directory.tool.FadaServiceID;

import net.fada.remote.RemoteException;

import net.fada.toolkit.FadaHelper;

import net.fada.transport.ClientTransportImpl;

import net.fada.transport.FadaHTTPServlet;

/**

 * Servlet used as a service. We can take advantage of the Application Server

 * architecture for placing our service.

 * It is also useful if we want to use the servlet interface to configure

 * servlet parameters in runtime or to analyze server progress.

 *

 * <code>init</code> method is used to register the service.

 *

 * @author bob (javier.noguera@techideas.info)

 */

public class UserList extends FadaHTTPServlet implements RemoteUserListWithStub

{

 private String roomName;

 private Collection names = new ArrayList ();

 /**

 * Registers the service in the FADA node. Some init parameters are

 * necessary:

 * - room_name

 * - fada_address

 * - end_point

 * - codebase

 * @see javax.servlet.Servlet#init(javax.servlet.ServletConfig)

 */

 public void init(ServletConfig config) throws ServletException

 {

 super.init(config);

 // Inicializamos el servicio en FADA

 String roomName = config.getInitParameter("room_name");

 String [] entries = new String [] {"userlist_j2ee", "userlist_servlet"};

 // getting arguments

 String fadaAddress = config.getInitParameter("fada_address");

 String servletUrl = config.getInitParameter("end_point");

 String codebase = config.getInitParameter("codebase"); //http://192.168.0.121/registerFada.jar";

 try {

 ClientTransportImpl trans = new ClientTransportImpl(servletUrl);

J.Noguera 50

FADA tutorial - Annex A

 // Create the stub and the proxy

 RemoteUserListWithStub stub = (RemoteUserListWithStub) this.export (this, trans);

 UserListProxy proxy = new UserListProxy (stub, roomName);

 // Prepare the FadaHelper instance

 FadaHelper helper = new FadaHelper(new FadaLeaseRenewer());

 // register service into a FADA node.

 FadaServiceID id = helper.register(

 new FadaLookupLocator (fadaAddress).getRegistrar(), // where to find a node

 proxy, // proxy (in this case created with fadagen)

 null, // FadaServiceId (if it was register before for example)

 entries, // entries that help the user to find the service

 10000L, // Renew lease period (in millis)

 null, // SecurityWrapper

 codebase, // codebase where cliend cand find libraries

 null); // What to do if FADA cannot renew the proxy

 System.out.println("proxy " + stub.getClass() + " was registered into the FADA node");

 }

 catch (FadaException e) {

 e.printStackTrace();

 }

 catch (IOException e) {

 e.printStackTrace();

 }

 catch (NullPointerException e) {

 e.printStackTrace();

 }

 catch (ClassNotFoundException e) {

 e.printStackTrace();

 }

 catch (InstantiationException e) {

 e.printStackTrace();

 }

 catch (IllegalAccessException e) {

 e.printStackTrace();

 }

 catch (InvalidKeyException e) {

 e.printStackTrace();

 }

 }

 /**

 * @see javax.servlet.http.HttpServlet#doGet(javax.servlet.http.HttpServletRequest,
javax.servlet.http.HttpServletResponse)

 */

 public void doGet(HttpServletRequest request, HttpServletResponse response) throws ServletException,
IOException

 {

 response.setContentType("text/html");

 PrintWriter out = response.getWriter();

 // Header

 out.println ("<html>");

 out.println ("Userlist:
<hr>");

 // Print all names

 for (Iterator it = names.iterator(); it.hasNext();) {

 out.println (" - " + it.next() + "
");

 }

 // Footer

 out.println("<hr>");

 out.println ("</html>");

 }

 /**

 * @see fadagen.RemoteUserListWithStub#register(java.lang.String)

 */

 public void addUser(String name) throws RemoteException

J.Noguera 51

FADA tutorial - Annex A

 {

 // Si NO existe, lo guardamos

 if (!names.contains(name)) {

 names.add(name);

 }

 }

 /**

 * @see fadagen.RemoteUserListWithStub#unregister(java.lang.String)

 */

 public void removeUser(String name) throws RemoteException

 {

 names.remove(name);

 }

 /**

 * @see fadagen.RemoteUserListWithStub#getList()

 */

 public String[] getList() throws RemoteException

 {

 // Creamos el array de salida

 String [] result = new String [names.size()];

 int i = 0;

 // Recorremos todos los nombres

 for (Iterator it = names.iterator(); it.hasNext();) {

 result [i++] = (String) it.next();

 }

 return result;

 }

}

UserListProxy
/*

 * Created on 15-jun-2004

 *

 * This file is part of the FADA tutorial

 * www.fadanet.org

 */

package net.fada.examples.j2ee;

import net.fada.remote.RemoteException;

/**

 * This proxy will be registered into a FADA node and will enable the comunication

 * between the client an the server (UserList in this case).

 *

 * This proxy knows how to "speak" with the server, where it is and where it is listening.

 * This class implements the apropiate protocol to send commands and recive information

 * from the server. The client will download this proxy form a FADA node and automatically

 * can communicate with the server not knowing where the server is or what the communication

 * protocol is.

 *

 * In this case the <code>UserListProxy</code> class will communicate with the server via socket.

 *

 * @author bob (javier.noguera@techideas.info)

 */

public class UserListProxy implements net.fada.examples.RemoteUserList, java.io.Serializable

{

 private RemoteUserListWithStub stub;

 private String roomName;

 /**

 * Empty constructor necessary for serialization

 *

 */

 public UserListProxy ()

 {

 /* nop */

J.Noguera 52

FADA tutorial - Annex A

 }

 /**

 * Creates a new instance to be registered into a FADA node, specifying the

 * <code>address</code> and the <code>port</code> where the server will be waiting.

 * <code>roomName</code> is an internal identifier not used in the communication

 * process.

 *

 * @param roomName

 * @param address

 * @param port

 */

 public UserListProxy (RemoteUserListWithStub stub, String roomName)

 {

 this.stub = stub;

 this.roomName = roomName;

 }

 /**

 * Communicates directly with the server and sends the appropiate command

 * to register the <code>name</code>

 *

 * @param name username

 */

 public void addUser(String name)

 {

 try {

 stub.addUser(name);

 } catch (RemoteException e) {

 e.printStackTrace();

 }

 }

 /**

 * Communicates directly with the server and sends the appropiate command

 * to unregister the <code>name</code>

 *

 * @param name username

 */

 public void removeUser(String name)

 {

 try {

 stub.removeUser (name);

 } catch (RemoteException e) {

 e.printStackTrace();

 }

 }

 /**

 * Gets the <code>roomName</code>. This method does not need a communication

 * whith the server.

 *

 * @param name username

 */

 public String getRoomName()

 {

 return roomName;

 }

 /**

 * Communicates directly with the server and sends the appropiate command

 * to get the registered user list

 *

 * @return usernames array.

 */

 public String[] getList()

 {

 String[] response = null;

 try {

 response = stub.getList();

 } catch (RemoteException e) {

 e.printStackTrace();

 }

J.Noguera 53

FADA tutorial - Annex A

 return response;

 }

}

J.Noguera 54

FADA tutorial -

J.Noguera 55

