FADA tutorial

FIDAN

FADA tutorial -

Revision history

Date Version Description Author
30jJune 2004 1.0 Initial Javier Noguera

J.Noguera 2

FADA tutorial - Table of contents

Table of contents

JLIE= 1 01 (SN0 0 1 1= 1 = 2
[0] =X, 0 o 3
o o Yo 11T f [Y o T’ |
LAY A g T= N A T N I N 5
LT Y2 2 S 8
LY Y N &= 1o a1 o] L= 9
DO-Tt-YOUISEI ... ettt ettt 9
= To = Lo 1= o TR 16
) 4= = Z 22
FADA NOGES OVEI @ LAN . ittt ittt ettt ettt et ettt et ra s e bt e et e ra et et et raeerreneres 27
LRy TSNV I V71 0| 29
SY=Te L gL T =] o] o L= PP 31
F N] 1 T 33
Client @nd SEIVICE INEEITACE. ...ttt ettt aeaaas 33
I T T Vo YU =] | S 36
= To = Lo =Y o TR 44
274 <=2 50

J.Noguera 3

FADA tutorial - Foreword

= S N
FHON

)

Foreword

We hope you find the information contained here complete and
useful.

Enjoy it.

The FADA development team.

J.Noguera 4

FADA tutorial - Introduction

= ol =,
I*t_’} FA

)

Introduction

This user manual tries to help programmers to work with FADA
technology. It includes examples and explanations about the most
important FADA scenarios.

In the first chapter there is a short explanation about FADA itself
and about FADA from the point of view of the client and the server. If
you need further detailed information about FADA architecture you
will find it in the file named Core FADA. It explains in depth the
bases of FADA, FADA nodes communication, etc.

In the second chapter we there is a discussion about the use of
FADA and the cases in which FADA may be necessary.

In the third chapter there are some FADA scenarios: do-it-yourself,
fadagen and fada J2EE. We will implement a solution in all three
scenarios using FADA with the same example. You will find all the
code for the three examples in the Annex A. It can be used as a
reference.

Fada Node Fada Node

Fada Node

Fada Node

Fada Node

FADA network architecture

J.Noguera 5

FADA tutorial - What is FADA ?

EE0d

)

What is FADA ?

FADA stands for “Federated Advanced Directory Architecture”. lItis
a virtual Lookup Server in the sense that different Lookup Servers
(FADA nodes) will work together to provide the LookupServer
functionality from any entry point. Also, any of these Lookup Servers
will cooperate with the rest to find implementations of services.

The FADA is a truly distributed system, in the sense that there is no
central authority or common communication channel.

The FADA holds proxies for services. A proxy is a Java class that
acts as a mediator between client and service provider performing
communication with a real service, and that is downloaded at run-
time by clients. Clients use the public methods on the proxies to
access the services. These public methods are specified in Java
interfaces that service proxies implement. A FADA node is a service
that acts as an entry point and a container to the distributed
database of services.

Service providers must implement Java classes that act as a
gateway to use their services, which may be written in Java or not. In
case they aren't, the Java class they provide to the FADA clients, the
service proxy from now on, can use whatever method to
communicate with the service. For example, the service could be
written in C, or it could be accessed through http, and the service
proxy could open sockets to the proper ports to communicate with
the service.

Note that these proxy objects will be executed in the client's
machine, so this fact must be taken in account when designing and
implementing service proxies.

Java, C, Php, Perl, Web
Service, Corba, sp .NET, ... Proxy 1
‘Accessible by HTTP protocol Fada Node| Proxy 2
]
Service 1 Machine #2
codebase

Server Machine

Situation after registration

J.Noguera 6

FADA tutorial - What is FADA ?

How FADA works

Let's see now, more in detail, one FADA node and the steps used
by the server to register a service and by the client to look for a
service.

One server who wants to register a service in a FADA node needs:

1. To have a service running. It is necessary to difference between
service and proxy. The service must be running over any machine
and can be implemented with any language or technology. The
proxy is a little piece or code that knows how to communicate with
the service.

2. To define a service interface. This interface will define the
methods that the client can execute to communicate with the
service. This interface is accessible to all clients and must be coded
in Java language.

3. To code a service proxy. The proxy is the implementation of the
service interface and it is the way in which the client executes the
service on the server side. The proxy class will be executed on the
client side, this has to be taken in account when implementing it. It
has to be coded in Java language.

4. To register the proxy in one FADA node. When the proxy is
uploaded to one FADA node it is available for any node within the
FADA network. Clients now can discover and use the service.

5. Make accessible a jar file with libraries. Proxy implementation
is not known by the clients so it has to be downloaded. The server
needs to make accessible all extra classes in a jar file to be used
by service proxy. The location of this jar file is named codebase.

Dynamically downloaded

1
p and loaded
roxy 1
Fada Node| Proxy 2 L look us th
. loo the service .
a ub Vi Client
L7
2. download the proxy > program
Machine #2 and the extra classes
Proxy 1
codebase
- 3. execute service on server \ JRE
Client Machine

Situation after discovering

J.Noguera 7

FADA tutorial - What is FADA ?

One client who wants to use a service (previously registered in the
FADA network) needs to follow the next steps:

1. To have the service interface in the classpath. Client does
not need to know anything about service or proxy implementation
but service interface must be accessible for compiling.

2. Discover the service. To discover the service, client needs to
know the name of the service interface (and optionally some of its
entries) and the address of one FADA node that is part of the FADA
network.

3. Download and execute the proxy. After discover the service,
FADA framework will automatically download and load the proxy in
memory using the codebase. Proxy is now ready to be used by
client therefore client will communicate directly with the service
running on the server.

J.Noguera 8

FADA tutorial - Why FADA

EE0d

)

Why FADA

FADA allows the servers to publish one or more services and make
them accessible to everyone. On the other hand, FADA allows to the
clients to find any published service and use it.

Client does not need to know how the service is implemented
neither where it is. Client only must find the service and, this is the
good thing, FADA assures us that the service is working.

We can imagine, for example, that we usually use FADA to access
to a printer service located over Internet (ie. A photo-shop store). One
day the printer is moved (its IP and name have changed). This is not
a problem, because a new proxy will be registered by the server. If
the printer is changed and a new protocol is needed, it is not a
problem either, because a new proxy will be implemented and re-
registered in the FADA network. If the server is down and
unaccessible the proxy will be unregistered automatically and no
client will be able to use that printer.

Thinking of FADA we can list situations in which it can be used and
in which it improve the development, the performance and the
accessibility:

If you need a distributed system over Internet (WAN) where many
servers offer many services for clients.

If the service nature is noncontinuous. In this scenario, clients
cannot access to the service at any moment. FADA assures the
client will not find the service if it is down.

If the service implementation can often change. The proxy will
code the new implementation without client knowledge.

If you have a distributed system with different Operating Systems
and/or different applications languages and you want to access in
the same way them all... of course, in Java.

If you want to connect two or more different applications. To

publish their service interfaces is the easiest way to integrate
them.

J.Noguera 9

FADA tutorial - FADA Examples

EE0d

)

FADA Examples

We will discuss now some scenarios in the use of FADA. This
chapter is a technical reference for programmers where they can see
how to use FADA API.

The sample code can be found at the end of the document (Annex
A)

You can access directly to the most suitable scenario:

Do-it-yourself. The easiest way to understand FADA. There is a
standalone service with and a customized protocol and it is
necessary to code and register the proxy.

Fadagen. The easiest way to create a service. There is no service
nor proxy but FADA will code them both for us.

J2EE. We can code the service like a servlet in an Application
Server and register it at start up.

We will use the same example in all three scenarios: “There is a
server where users can be added or removed. A client looks for the
service (discovers it over FADA network) and add his/her username.
Clients can also get a list of usernames from the server”.

Do-it-yourself scenario

In the first case we begin with a server running and waiting for
clients. It can be coded in any language and it can implement any
protocol (http, simple xml, soap...). To register this service in the
FADA network we only need to define the service interface and to
code the proxy.

Server

In our example the server implements it own communication
protocol: One character that indicates the action and one argument if
needed. There are four possible actions:

Add a user: “A <user_name>"
Remove a user: “R <user_name>"

List usernames: “L”. Returns a list of usernames separated by “#”
token.

J.Noguera 10

FADA tutorial - FADA Examples

Quit: “Q”. This stops the server.

We can run the service before registering the service. We will leave
it listening on port 2727.

j ava net. fada. exanpl es. upt oyou. Userli st 2727

Users who do not want to use FADA can access to the server now.
We will still wait until the service will be registered.

Service interface

Now we have to define the server interface. This interface is used
by clients to access to the server, so, we need to define the methods
to be used by clients. In this example we will authorize the clients to
add, remove and get a list of usernames, but they will not stop the
server.

public interface RenoteUserlList {
public void register (String nane);
public void unregister (String name);
public String get RoomNane ();
public String [] getList ();

}

We can notice three important aspects of the interface definition:
First, we have not define a quit method, so we will not allow users to
stop the server. Second, the get Li st method will return an array of
usernames instead of a usernames list separated by “#” token. And
third, we have added an extra method called get RoomNane not known
by the server but, in this case, known by the proxy.

Client must know the interface before compiling so it has to be well
done and preview future changes. Changes in the implementation
(proxy) will not affect to the client, changes in the interface will do.

Now we have the definition of the service, let's implement it with
the proxy class.

Proxy

The proxy class implements the Renot eUser Li st interface and, of
course, java.io. Serializable. If the proxy does not implement
java.io. Serializabl e it will not be able to be register in the FADA
node.

In our example, the proxy class will open a socket to the server for
each action (except get RoomNanme method) . As you can see, to
implement the proxy it is necessary to know how to communicate
with the server. It is also necessary to know the address and port

J.Noguera 11

FADA tutorial - FADA Examples

where server is listening. This information will be st in the proxy in
the constructor along with the r oomNane.

An empty constructor is also necessary for serialization proposes.

public class UserlListProxy inmplenents RenpteUserlList, java.io. Serializable

{
private String roomName;
private String ip;
private int port;

/**

* Enpty constructor necessary for serialization

*/
publ i c UserListProxy ()
{

/* nop */

}

/**

* Creates a new i nstance specifying address, name and an extra paraneter
* call ed roomNane defined in register tinme.

*/

public UserListProxy (String roomName, String address, int port)

{

this.roomNane = roomNane;
this.ip = address;
this.port = port;

}

There are two simple methods without return value: addUser and
renoveUser .

public void addUser (String nane)

{
send ("A " + nane);
}
public void renpveUser(String nane)
{
send ("R " + nanme);
}

The get Li st method has to transform the server output to adapt it
to the interface definition. The server will return a separated by “#”
String with usernames. We will change this return value in a string
array.

public String[] getList()
{

String[] response = null;
int i =0;

StringTokeni zer nanelist = new StringTokeni zer(send ("L"), "#", false);

/1 1f there are results
if (nanelist !'=null) {

J.Noguera 12

FADA tutorial - FADA Examples

/1 Allocate array size for response and fill it
response = new String [nanelist.countTokens()];
whi l e (nanelist. hasMreTokens()) ({
response[i ++] = nanelist.next Token();
}
}

return response;

}

Finally we have a method called get RoomNane that have no relation
with the server. This is an extra known information when the server
registers the proxy in FADA network. We will get this information
stored in the server proxy and no communication with the server will
be needed.

public String get RoonNane()
{

return roonNarne;

Service Interface

|
|
) - getList i
SErles register
- Proxy
4 unregister

Server Machine
getRoomName

Proxy implementation
}

Registering the proxy

Finally the server must register the proxy in the FADA network to
make it accessible by the clients. The easy way to do this is to use
the net . f ada. t ool ki t. FadaHel per class.

First of all we need to create a proxy instance. This instance will be
sent to the FADA network and used by clients to access directly to
the server. We must specify the address and the port to the server.

String roomNane = “Exanpl e do-it-yourself”;

String serverAddress = “my. nmachine”;

int serverPort = 2727;

User Li st Proxy proxy = new UserListProxy (roomNane, serverAddress, serverPort);

To register a service we will use the regi ster method, located in
FadaHel per class. Let's see it:

publ i c FadaServicel D regi ster(Fadal nterface fp,
java.io.Serializable item

J.Noguera 13

FADA tutorial - FADA Examples

FadaServicel D i d,

java.lang. String[] entries,

| ong | easePeri od,

SecurityWapper w apper,

java.lang. String annotation,

Renewal Event Li st ener |i stener)
throws FadaExcepti on,

java.io. | OException,

java. |l ang. Nul | Poi nt er Excepti on,

java.security.|nval i dkeyException

Fadalnterface fp. This is the FADA node proxy in which service

will be registered. When we are using FADA through a WAN it is
necessary to know the address and the port in which the FADA
node is listening. If we are using FADA through a LAN there are
multicast methods to find any of the FADA nodes in it (we will see it
ahead).

java.io.Serializable item. This is the proxy, the serializable
object to be registered in the node. This is the piece of code used
by clients.

FadaServicelD id. This is the identifier of the service. The
regi ster method returns a FadaServicelD, we can use this id here
for re-registration purposes. The first time we need to register a
service this parameter can be null.

java.lang.String[] entries. We can register the service with
some entries to be found by the client. When a client is searching
for a service he can specify the service interface and/or any of the
entries it has been registered with. This is an easy way to
distinguish between different implementations or different
providers of the same interface.

long leasePeriod. Periodically and automatically the registration
class sends sighals to the FADA node which stores the service to
renew it. The leasePeriod is the maximum time passed between
two signals. If signal is not send, the service will be automatically
unregistered from FADA node. It is expressed in milliseconds.

SecurityWrapper wrapper. We can sign the object with the
security wrapper (we will see it ahead). If no sign is needed null is
possible.

java.lang.String annotation (a.k.a. codebase). We know that
the proxy class will be registered in a FADA node and later
downloaded by client to be executed, but proxy class and other
classes used by the proxy are not in the client classpath. Server
must publish the codebase (a jar file with the extra classes) usually

J.Noguera 14

FADA tutorial - FADA Examples

over a Web Server. Annotation is the full URL to locate the extra
classes.

RenewalEventListener listener. If the lease can not be
renewed, this class is called to do something, for example, to re-
register it, send an email to the boss, etc. We will see it ahead.

The first thing we need to do is a Fadal nterface, with the node
address.

This code will register the proxy interface created before in the
FADA node located on www.fadanet.org:2002. In the code you can
see how we create a new instance of FadaHel per class with a
FadaLeaseRenewer object as a parameter. This parameter will control
when to send the renew signal. One good practice is not to try to
change this class.

String [] entries = new String [] {"userlist_yourself", "do-it-yourself"};
String codebase = “http://nmy.server/classes.jar”;

try {
/'l Prepare the FadaHel per instance

FadaHel per hel per = new FadaHel per (new FadaLeaseRenewer ());

/1 register service in a FADA node.
FadaServicel D id = hel per.register(
new FadalLookupLocat or (“wwv. fadanet. org: 2002"). get Regi strar (),

pr oxy,
nul |,
entries,
10000L,
nul |,
codebase,
null);

}
catch (Exception e) {
// TODO Sonet hing

}

Codebase parameter is needed because the proxy uses
User Li st Proxy class and the client needs to find this class and load
it. Codebase points to a .jar file that contains, at least,
User Li st Proxy class.

The service is registered in the FADA network but... what happens
with the renewal? In this example we have launched the server
before registering the service inside the FADA node. This is good for
to understand the different parts of a FADA architecture but there is a
problem. When register class finish its execution, the lease will not be
sent and and the service will be unregistered.

If it is possible, the easy way is to register the service at the same
time we start up the server. If it is not possible we can do something

J.Noguera 15

FADA tutorial - FADA Examples

else. The register thread must not finish while the server is running.
In our example we know were the server is listening so we can see if

it is running.

[l W will wait till server is up.
while (true) {

Socket s = new Socket (serverAddress,

s.close();

try {
Thr ead. sl eep(10000);

}
catch (InterruptedException e) { /*

}

Client

If server is down,

a exception is thrown

serverPort);

nop */ }

Once the proxy has been published, any client can use it. Client
only needs to look for the proxy along the FADA network.

There are some things client

needs to know: the location of one

FADA node address, and the name of the interface he wants to use.
Maybe it is necessary to know some entries that the server used to
register the service, specially if there are many proxies implementing
the same interface registered in the FADA network.

To look for a service we will use the static | ookup method, located

in FadaHel per class. Let's see it.

public static java.lang. Object[] |ookup(Fadal nterface fp,

t hr ows

java.lang.String[] entries.

java.lang. String[] entries,
FadaServicel D id,

java.lang. String[] servTypes,

i nt maxMat ches,

| ong tineout,
java.security.cert.X509Certificate cert)
FadaExcepti on,

java.io. | Cexception,

java.l ang. O assNot FoundExcepti on,
java. |l ang. Nul | Poi nt er Excepti on,
java.security. | nval i dKkeyException

Fadalnterface fp. Like in the regi st er method.

Array of entries that we want to use

in the search. Each interface returned will contain all these entries

(AND operation).

FadaServicelD id. Like in the r egi st er method.

java.lang.String[] servTypes. The name of any interface the

proxy can implement. Each interface returned will implement all

these entries (AND operation).

J.Noguera

16

FADA tutorial - FADA Examples

int maxMatches. The return value of the lookup method is an
array of proxies. We can specify a maximum of results to be
returned.

long timeout. As the FADA network can be very wide, we must
indicate the maximum time we want to wait while FADA makes the
search. It is expressed in milliseconds.

java.security.cert.X509Certificate cert. When a server
registers a service, can attach a certificate. User can perform a
search over the FADA network indicating the certificate trusted by
him. This is the way clients can trust they are executing secure
code.

In our example the interface is named
net . f ada. exanpl es. upt oyou. Renot eUser Li st. We will search for
ten seconds as a maximum and we will not specify any entry. After
obtaining the result array we will take the first ones.

oj ect[] proxies = FadaHel per. | ookup(
fadaUrl,
nul |,
nul |,
new String[] { "info.techideas. uptoyou. RenoteUserlList" },
1,
10000L) ;

We can now execute any of the interface methods:

/1l Cast is needed
Renpt eUser Li st service = (RenoteUserList) proxies[O0];

service. register("bob");
String [] list = service.getList();

Fadagen scenario

In this second example we have no server nor protocol defined yet.
We will use fadagen to automatically create the server and the proxy.
Once the process will be finished, we will have a server listening on a
port and a proxy that communicates with it using serialization.

It will be more difficult to integrate our server with other clients but
it will be the easiest way for us.

This example implies changes in the server and in the client side.
At the end of the section we will explain how to do this changes
without affecting the client side.

J.Noguera 17

FADA tutorial - FADA Examples

Service interface

The server interface suffers few changes: it has to extend
net. f ada. r enot e. Renot e interface and each method needs to throw
a net . f ada. r enpt e. Renpt eExcept i on exception.

public interface RenoteUserLi st WthStub extends net.fada.renote. Renpnte

{

public void addUser (String nanme) throws net.fada.renpte. Renpt eExcepti on;
public void renpveUser (String nane) throws net.fada.renpte. Renot eExcepti on;
public String get RoomNanme () throws net.fada.renote. Renpt eExcepti on;

public String [] getList () throws net.fada.renpte. Renpt eExcepti on;

}

Server

To code the server we only need to implement the interface
without thinking of socket or communication. Later we will create the
stub and skeleton classes that will perform remote communication.

Before continuing some words about the stub and the skeleton
classes are necessary. These classes are used by Java to perform a
Remote Method Invocation (RMI). The stub and the skeleton classes
mask the communication protocol between two classes located in
different machines over the net. Both classes are creates
automatically by helper programs. You will find further information at
http://java.sun.com/products/jdk/rmi/

Our server needs to implement the interface defined before and to
extend net . f ada. r enot e. Renpt ebj ect class.

i nport net.fada.renote. Renot e(bj ect ;

public class UserlList extends RenoteCbject inplenents RenmoteUserListWthStub
{

private String roomName;

private Collection nanes = new ArraylList ();

}

Implementation is now pretty simple. We only need to implement a
simple java class. Notice that we have decided to include roomName
as part of the server.

public void addUser(String nane) throws RenoteException
{
if (!nanes.contains(nane)) {
nanes. add(nane) ;

}

public void renpveUser(String name) throws RenoteException

{

nanes. r enove(hane) ;

}

J.Noguera 18

FADA tutorial - FADA Examples

public String get RoomNane() throws RenoteException
{

return roonmNane;

}

public String[] getList() throws RenoteException
{

String [] result = new String [names.size()];

int i =0;

for (lterator it = names.iterator(); it.hasNext();) {
result [i++] = (String) it.next();

}

return result;

}

A constructor is also necessary, it will receive roomName as a
parameter.

public UserList (String roomNane)

{
thi s.roonName = rooniNane;

}

Once the server has been coded we will generate stub and
skeleton classes. We will use fadagen. jar library included in FADA
distribution. f adagen. j ar library contains a main class that receives
as a parameter the class from which we want to obtain the skeleton
and stub classes. The classes obtained are source files (.java) located
in the same directory where original class file was. These classes
have to be moved, if necessary, and compiled. fada-tool kit.jar is
also necessary to be in the classpath.

java -jar ../lib/fadagen.jar \
-classpath ../lib/fada-toolkit.jar:. \
i nfo.techi deas. fadagen. User Li st

UserList_Skel.java and UserlList_Stub.java have been
created.

Proxy

In the first and easy example of fadagen we will not use a real
proxy. Instead we will use the User Li st _St ub class as a proxy. At the
end of this section we will explain how to implement a real proxy that
implies no change in client side.

Registering the proxy

Before registering the server we need to run it. Because we have
extended net.fada.renote. RenoteCbject we have an export
method. This method takes an instance of two classes, which are
implementations of the interfaces ServerTransport and

J.Noguera 19

FADA tutorial - FADA Examples

ClientTransport. The FADA software bundle offers a default
implementation for each interface, using HTTP as the transport layer.
The implementation of the transport layer is open, and can be freely
modified by providing a different implementation of the
ServerTransport and ClientTransport interfaces.

ServerTransport receives two parameters: the port to be used by
the server and the endpoint of the service.

Client Transport receives only one parameter, the full URL in which
the server will be listening.

/1 Some harcoded paraneters

String roomNane = “Exanpl e fadagen”;

String address = “ny.nachine”; /] server Address
int port = 2727; [/ port Address
String endpoint = “/exanpl e/ fadagen”;

// Create a server instance
User Li st nmyRegi ster = new UserList (roomNane);

// Create transport classes

Server Transport st = new Server Transport!|npl (port, address);

CientTransport ct = new dientTransportlnpl ("http://" + address + “:" +
port + endpoint);

/1 Return the stub (our proxy)
Renot eSt ub stub = nyRegi ster. export(st, ct);

At this moment the server is running and we only need to register
the proxy in the FADA network. We will register the proxy with one
entry named “userlist fadagen”.

/'l Prepare the FadaHel per instance
FadaHel per hel per = new FadaHel per (new FadalLeaseRenewer());

I/ register service in a FADA node.

FadaServicel D id = hel per.register(

new FadalLookupLocator (fadaAddress).getRegistrar(), // where to find a node
(Serializable) stub, // proxy (in this case created with fadagen)

nul |, //FadaServiceld (if it was register before for exanple)
entries, /1 entries that help the user to find the service
10000L, /1 Renew | ease period (in mllis)

nul |, /1 SecurityWapper

codebase, /| codebase where client cant find libraries

null); // What to do if FADA cannot renew the proxy

J.Noguera 20

FADA tutorial - FADA Examples

Server is now running and the service is registered.

skeleton FADA node
c . roxy 1
3 Service e
T T stub
= g
5 Server Machine g -
o 0
stub < K Machine #2
Client program Implements
: : RemoteUserListWithStub and
Client Maching throws Exceptions

Registering the stub

Codebase parameter is needed because the proxy uses
User Li st _St ub class and the client needs to find this class and load
it. Codebase points to a .ar file that contains, at least,
User Li st _St ub class.

Client

Client is basically the same we explained in the previous example.
There are only few changes to be made:

The service interface has change so names have to be updated.

The new interface methods now throw exceptions that can be
caught.

Coding a real proxy

In the previous example we have registered directly the stub class.
This is good enough but, this way, the client have to change his code
because the remote interface has change.

The correct way to do it is to create a proxy class that implements
the original interface. This class receives the stub class as a
parameter and call its methods when necessary. Another advantage
is the possibility of make changes or transformations with the input
parameters or with the return value.

In this new scenario you can see that the RemoteUserListWithStub
interface and the original RemoteUserList interface don't need to
declare the same methods. Proxy class will manage to agree the

J.Noguera 21

? FADA tutorial - FADA Examples
Fofon

methods using the stub interface. The new proxy implementation will
look like this:

public class UserListProxy
i mpl enents net.fada. exanpl es. Renpt eUser Li st, java.io.Serializable

{
private RenoteUserLi stWthStub stub;
private String roonmNare;
public UserlListProxy () {
}
public UserlListProxy (RenoteUserListWthStub stub, String roomNane) {
this.stub = stub;
t hi s. roomName = roonNane;
}
public void addUser (String name) {
try {
st ub. addUser (nane) ;
} catch (RenoteException e) {
e.printStackTrace();
}
}
}
FADA node
s Service I
! |
S g
-~
£ 3
o
© 3
|
|

Implements the original
) RemoteUserList. No changes
Client program needed.

Registering a new proxy that contains the stub class

J.Noguera 22

FADA tutorial - FADA Examples

J2ee scenario

In this third example we will place our service inside an Application
Server. We will take advantage of the communication and
configuration improvements that the application server have.

We will do this coding our service in a servlet. This servlet will also
be the service register so we need assure the service will be
registered when the application server will start. The suitable way to
do it will be using the init method to register the service and
modifying the web.xml file to indicate to the Application Server that
we want to load the servlet at the beginning.

As in the previous case the stub and the skeleton classes will be
needed and, also like in the previous case, we can register directly
the stub class implementing Renot eUser Li st Wt hSt ub interface, or
wrap it inside the proxy class than implements the original
Renot eUser Li st interface.

FADA node
skeleton proxy 1
§ Servlet TT[1__Proxy
5 - .
= J2EE Servlet Container g
% Server Machine § Machine #2

A

stub

proxy

Client program

Client Machine

Registering a new proxy that contains the stub class

Service interface

The server interface do not suffer any change. It still has to extend
net . f ada. renot e. Renot e interface and each method needs to throw
a net . f ada. r enot e. Renpt eExcept i on exception.

public interface RenoteUserLi st WthStub extends net.fada.renpte. Renote

{
public void register (String nanme) throws net.fada.renote. Renpt eExcepti on;
public void unregister (String nane) throws net.fada.renote. Renot eExcepti on;
public String getRoonNane () throws net.fada.renote. Renpot eExcepti on;
public String [] getList () throws net.fada.renote. Renot eExcepti on;

J.Noguera 23

FADA tutorial - FADA Examples

Server

The service in now a servlet and needs to extends
FadaHt t pSer vl et . This class extends directly the H t pSer vl et class,
needed for servlets. It also have some code necessary to perform the
communication between client and server using the HTTP protocol
through the POST method.

POST method is used by FADA so our servlet can only use the GET
method for our proposes and never overwrite the original doPost
method (neither the doService, which affect directly to the doPost
method).

Usually servlets will do nothing when doGet method is executed
and will only attend FADA clients (no Web Server clients). In our
example, nevertheless, when the doGet method is executed, a list of
users is showed in the browser.

public class UserlList extends FadaHTTPServl et inplenents RenpteUserLi st WthStub
{

private String roomNane;
private Collection nanes = new ArraylList ();

public void init(ServletConfig config) throws ServletException
{

}

public void doGet (HttpServl et Request request, HttpServlet Response response)
throws Servl et Exception, |OException

{
response. set Cont ent Type(“"text/htm ");
PrintWiter out = response.getWiter();

/'l Header
out.println ("<htm >Userlist:
<hr>");

/1 Print all names
for (lterator it = names.iterator(); it.hasNext();) {
out.println (" - " + it.next() + "
");

}

/] Foot er
out. println("<hr></htm >");

public void addUser (String nane) throws RenoteException
{
/1 Si NO existe, |o guardanps
if (!nanes.contains(nane)) {
nanes. add(nane) ;

}

J.Noguera 24

FADA tutorial - FADA Examples

Proxy

We will code our proxy wrapping the UserLi st _Stub class. First
thing is to create UserLi st _Stub and UserlLi st Skel classes using
the f adagen. j ar library.

java -jar ../lib/fadagen.jar \
-classpath ../lib/fada-toolkit.jar:. \
i nfo.techideas.j2ee. UserLi st

Once created we can code our proxy class as in the previous
example:

public class UserListProxy
i mpl enents net.fada. exanpl es. RenpteUser Li st, java.io.Serializable

{
private RenoteUserListWthStub stub;

private String roomNare;

public UserlListProxy ()

{
/* nop */
}

public UserListProxy (RenoteUserListWthStub stub, String roonNane)

{
this.stub = stub;

thi s. roonmNane = roonNane;

}

public void addUser(String nane)

{

try {
st ub. addUser (nane) ;

}
catch (Renot eException e) {
e.printStackTrace();

}

Registering the proxy

The best place for registering the service is the init method located
in the servlet. We can access to the configuration variables defined in
the web.xml file. Also in this example, the Fadagen transport will be
used.

public void init(ServletConfig config) throws ServletException
{

super.init(config);
String [] entries = new String [] {"userlist_j2ee", "userlist_servlet"};

J.Noguera 25

FADA tutorial - FADA Examples

/] CGetting paraneters

String roomNane = config.getlnitParaneter("roomnanme");
String fadaAddress = config.getlnitParameter("fada_address");
String servletUl = config.getlnitParaneter("end_point");
String codebase = config.getlnitParaneter("codebase");

try {
CientTransportlnpl trans = new CientTransportlnpl (servietUl);

/Il Create the stub and the proxy
Renot eUser Li st Wt hStub stub =

(Renpt eUser Li st Wt hStub) this.export (this, trans);
User Li st Proxy proxy = new UserListProxy (stub, roomNane);

/'l Prepare the FadaHel per instance
FadaHel per hel per = new FadaHel per (new FadalLeaseRenewer());

/1 register service into a FADA node.
FadaServicel D id = hel per.register(
new FadalLookupLocat or (fadaAddress).getRegistrar(), // where to find a node

pr oxy, /1 proxy (in this case created with fadagen)

nul |, /] FadaServiceld (if it was register before for exanple)
entries, // entries that help the user to find the service
10000L, /! Renew | ease period (in mllis)

nul |, /1 SecurityW apper

codebase, /1 codebase where cliend cand find libraries

null); /1 What to do if FADA cannot renew the proxy

Systemout. println("proxy was registered into the FADA node");
}
catch (Exception e) {

e.printStackTrace();

}

Some changes have to be done in the web.xml file. We will specify
the servlet name and the init parameters.

<servl et>
<servl et - name>User Li st </ ser vl et - name>
<servl et-cl ass>net. fada. exanpl es. j 2ee. User Li st </ servl et - cl ass>
<i ni t-paranp
<par am name>r oom nane</ par am nanme>
<par am val ue>ROOM user| i st J2EE</ par am val ue>
</init-paranp
<init-paranr
<par am nane>f ada_addr ess</ par am nane>
<par am val ue>l ocal host : 2002</ par am val ue>
</init-paranm
<i ni t-paranp
<par am nane>end_poi nt </ par am nane>
<param val ue>http:// 1 ocal host: 8080/ tutorial/userlist</paramval ue>
</init-paranr>
<i ni t-paranp
<par am nanme>codebase</ par am nane>
<param val ue>http://1 ocal host: 8080/tutorial/tutorial_classes.jar</paramval ue>
</init-paranr
<l oad- on- st art up>1</| oad- on- st art up>
</servlet>

J.Noguera 26

FADA tutorial - FADA Examples

<servl et - mappi ng>
<servl et - nane>User Li st </ ser vl et - name>
<url -pattern>/userlist</url-pattern>
</ servl et - mappi ng>

Client

Client is the same of the first example because we used a proxy
that implements the original service interface.

After a few tests we can check the service with a browser calling
the servlet without parameters.

J.Noguera 27

FADA tutorial - FADA nodes over a LAN

EE0d

)

FADA nodes over a LAN

As we have seen, clients who are searching for a service in the
FADA network need, to know the address of, at least, one FADA node
and the port in with it is running.

If our FADA network is running in a LAN (or it is running in a WAN
but we know one of the nodes is in our LAN network), we can use
multi-cast technology to discover it.

There are two helper classes that will help us to do the discovering:
Di scoveryLi stener and FadabDi scovery, both located in the
net . fada. t ool kit package.

Di scoverylLi stener is an interface with one only method to be
implemented named discovered. This method is called when a new
node is found.

FadaDi scovery is a helper «class to which so many
Di scoverylLi stener implementation can be added. When a new
Di scoverylLi stener implementation is added, a new multi-cast
signal is sent over the net.

Notice that you can specify in the FADA node configuration file if it
must be listening for multi-cast signal or not. Nodes not listening will
not be discovered at all.

Once the node has been discovered the process continues in the
habitual way.

public class dientLan inplenments Di scoveryli stener

{

static int nodes = 0O;

public static void main(String[] args)

{
/1 New FadaDi scovery cl ass
FadaDi scovery fadaLan = new FadaDi scovery ();

try {
/1 New Di scoverylLi stener |nplenentation
ClientLan me = new dientlLan ();

/1 Send a multi-cast signal
fadalLan. addDi scoveryLi st ener(ne);

/] Witing...
Systemout.println("waiting 10 seconds...");
Thr ead. sl eep(10000);

Systemout.printlin("finished. " + nodes + " nodes was/were found");

}
catch (1 OException e) {
e.printStackTrace();

J.Noguera 28

FADA tutorial - FADA nodes over a LAN

catch (InterruptedException e) {
e.printStackTrace();

}

/**
* @ee net.fada.tool kit.Di scoverylLi st ener#di scover ed(FadaLookupLocat or)
*/

public voi d di scovered(FadaLookupLocator | ocator)

{

nodes++,;
System out. println("FADA node found: " +
| ocator.getHost() + ":" + locator.getPort());

As you can see, discover method is called with a
FadaLookupLocator as a parameter. This parameter contains all
information about the node.

J.Noguera 29

FADA tutorial - Renewal Event

Renewal Event

When a proxy is registered in a FADA node you can specify what to
do if the renewal fails. Usually you need to find another FADA node or
try to register in the same FADA node again. Sometimes we will not
want to re-register the node but write the failure in a log file, send an
email or write a entry in the Database.

Renewal Event Li st ener interface have to be implemented and
passed as a parameter to the register method. It is located in the
net . fada. di rectory. tool package.

We have change the Fadagen Register class to catch the renewal
event and try to re-register the proxy if it fails. First of all, we need to
implement Renewal Event Li st ener and to keep some variables as a
member variables. The static main method now create a class
instance. Some code has been replaced by “..."” characters.

public class RegisterFadagen i npl enents Renewal Event Li st ener
{

/'l Variabl es needed

private FadaServicel D id;

private UserlListProxy proxy;

private String codebase;

private FadaHel per hel per;

private String fadaAddress;

public static void main(String[] arg) {
Regi st er Fadagen regi ster = new Regi st er Fadagen ();
cp.register(arg);

}
public void register (String[] arg) {

/'l Prepare the FadaHel per instance
hel per = new FadaHel per (new FadalLeaseRenewer ());

/1 register service into a FADA node.

id = hel per.register(
new FadalLookupLocat or (fadaAddress).getRegistrar(), // where to find a node
proxy, // proxy (in this case created with fadagen)

nul |, /] FadaServiceld (if it was register before for exanple)
entries, // entries that help the user to find the service
10000L, /! Renew | ease period (in mllis)

nul |, /'l SecurityW apper

codebase /1 codebase where cliend cand find libraries

t his); /1 What to do if FADA cannot renew the proxy

| **

* @ee net.fada.directory.tool.Renewal Event Li st ener #event Cccur ed(Renewal Event)

J.Noguera 30

FADA tutorial - Renewal Event

*
/
public void event Qccur ed(Renewal Event event)
{
Systemout.printin(“reregistering... ");
try {

id = hel per.register(
new FadalLookupLocat or (fadaAddress).getRegistrar(),
proxy, // proxy (in this case created with fadagen)

id, /'l FadaServiceld (if it was register before for exanple)
new String [] {"re-registered"}, /] entries

10000L, /1l Renew | ease period (in mllis)

nul |, /1 SecurityWapper

codebase, /| codebase where cliend cand find libraries
this);

} catch (Exception e) {
e.printStackTrace();

}
}

We store the FadaServicelD returned in the first register to use it if
a second (or third, or fourth,...) register is necessary. We are doing
this to maintain registration consistency. This is a good practice even
though it is not necessary.

J.Noguera 31

FADA tutorial - Security Wrapper

Security Wrapper

Security can be added to our registered proxies. X509 certificates
can be registered within the proxy in the FADA node. These
certificates indicate who registered the proxy and who is the
certification authority (CA). Clients can use this information to
retrieve only the services they trust.

When the client performs the lookup operation, he can specify any
X509Certi ficate to find with. If no Certificate is send, all proxies that
match with interface and entries are retrieved. If a Certificate is used,
only proxies with the appropriate certificate are retrieved.

Usually two certificates are necessary at registration time: the
target certificate and the certification authority one. The target
Pri vat eKey is also necessary to create a hash value that is attached
to the proxy and later checked by the client.

We can modify our Fadagen example to create a SecurityWrapper.
Keys and certificates are stored in the /tmp folder.

/!l Read the private key froma file

byte [] buffer = new byte[2048];

FilelnputStreamfis = new Fil el nput Stream ("/tnp/cert.key");
int len = fis.read(buffer);

BASE64Decoder dec = new BASE64Decoder ();

byte [] bkey = dec. decodeBuffer(new String (buffer, 0, len));

SecurityWapper sw = null;
try {
/Il Gets the PrivateKey class
KeyFactory keyFactory = KeyFactory. getlnstance("RSA");
Privat eKey priKey = keyFactory. generatePrivat e(new PKCS8EncodedKeySpec (bkey));

/] Get both certificates
Certificate targetCert = new X509Cert!|npl (new Fil el nputStream ("/tnp/cert.pent));
Certificate caCert = new X509Cert!|npl (new FilelnputStream ("/tnp/cacert.pen));

/] Create the SecurityCertificate
sw = new SecurityWapper (priKey, new Certificate [] { targetCert, caCert});

} catch (Exception e) {
el. printStackTrace();

}

/1 register service in a FADA node.
FadaServicel D id = hel per.register(
new FadalLookupLocat or (“wwv. fadanet. org: 2002"). get Regi strar (),
pr oxy,
nul |,
entries,
10000L,
nul |,
codebase,

J.Noguera 32

FADA tutorial - Security Wrapper

sw); // The security wrapper

Similar code is executed by the client to read the certificate and
later it is used in the lookup. In this case the certificate is explicitly a

X509Certificate.
X509Certificate cert = null;
try {

/1 Read the X509Certificate

cert = new X509Cert|Inpl (new FilelnputStream ("/tnp/cacert.pent);
} catch (Exception el) {

el. printStackTrace();

}

J.Noguera 33

FADA tutorial - Annex A

Annex A

Client and Service interface

Client

| *

* Created on 15-jun-2004

*

* This file is part of the FADA tutorial
* wwv. f adanet . org

*/

package net.fada. exanpl es;

i mport
i nport

i mport
i mport
i mport

%%

java.io. | OException;
java.security. I nvalidKeyException;

net . f ada. FadaExcepti on;
net . f ada. di rect ory. FadaLookupLocat or;
net . f ada. t ool ki t. FadaHel per;

* Ceneric client to execute any proxy that inplements net.fada. exanpl es. Renot eUser Li st

*

* @ut hor bob (javier.noguera@ echi deas. info)

*/

public class Cient

{

public static void main(String[] arg)

{

/1 check if we have enough args
if (arg.length < 2) {

help ();

return;

/1 getting argunents

String fadaAddress = arg[0];
String action = arg[1];
String parameter = null;

/1 Try to get optional paréaneters
if (arg.length > 2) {
parameter = arg[2];

/1 Prepare the | ookup request paraneters
String[] interfaces = new String[] { "net.fada.exanpl es. RenoteUserList" };

/1 Performthe | ookup procedure
Obj ect[] proxies;
try {
proxi es = FadaHel per. | ookup(
new FadaLookupLocat or (fadaAddress).getRegistrar(), // where to find a node

nul |, /1 entries to search for

nul |, /1 FadaServiceld

interfaces, /1 interfaces to search for

1, /1 Max results we want to search for
10000L, /1 Search expiration times (in nmllis)
nul | /1l Certificate (if needed)

)i

/1 Take one of the returned service proxies

if (proxies.length == 0) {
Systemout.println (" Proxy do not found :(");
return;

J.Noguera

34

FADA tutorial - Annex A

/1l Declare a variable to cast the service proxy onto
net . f ada. exanpl es. Renot eUser Li st service = (net.fada. exanpl es. Renot eUser Li st) proxies[0];

/1 Wite the command to be executed
Systemout. println(" Executing action:

+ action + + paraneter);
if ("add".equals (action)) {
service. addUser (paraneter);
}
else if ("renpve".equal s(action)) {
service. renmoveUser (paraneter);
}
else if ("list".equals(action)) {
String [] list = service.getList();
for (int i =0; i <list.length; i++) {
Systemout.printIn("\t" + list[i]);

}

else if ("nane".equal s(action)) {
System out . println(service. get RoonName());

}

catch (FadaException e) {
e.printStackTrace();

}

catch (I OException e) {
e.printStackTrace();

}

catch (C assNot FoundException e) {
e.printStackTrace();

}

catch (Null Poi nterException e) {
e.printStackTrace();

}

catch (InvalidKeyException e) {
e.printStackTrace();

R

* Wite help to the standard out put

*

*/

private static void help ()

{
Systemout.println("FADA client");
System out. println("Usage");
Systemout. println("java net.fada. exanples.Cient fada_url action [paraneter]");
Systemout.println("\tfada_address: address and port to the fada node");
Systemout.println(“\taction: action to do (add, renove, list or name)");
Systemout.println("\tparameter: parameter needed by the action (if applicable)");
Systemout.printIn(“\nie. java net.fada. exanpl es.j2ee.dient |ocal host:2002 add bob");
Systemout. println(" java net.fada. exanpl es.j2ee. Client |ocal host2002 renobve bob");
Systemout. println(" java net.fada. exanpl es.j2ee.dient |ocal host2002 list");
Systemout. println(" java net.fada. exanpl es.j 2ee. Cli ent |ocal host2002 nane");

}

RemoteUserList

/*
* Created on 14-jun-2004
*
* This file is part of the FADA tutorial
* wwv. f adanet . org
*/
package net.fada. exanpl es;

/**
* Defines the nethods that have to be inplemented by the proxy to acces to the server
* service.

J.Noguera 35

FADA tutorial - Annex A

* This Interface have to be into the client CLASSPATH. The proxy that inplements this
* interface will be downl oaded froma FADA node by the client.

*

* @ut hor bob (javier.noguera@ echi deas. info)

*/
public interface RenoteUserLi st
{
**
* Regi sters one <code>name</code> into the server. If the usernane is already registered,
* do nothing
*
* (@aram name user nane
*/
public void addUser (String nane);
/**
* Unregi ster one <code>nane</code> into the server. If the username is not registered,
* do not hi ng.
*
* @aram name usernane
*/
public void renoveUser (String nane);
/**
* Returns the <code>roonNane</code> of the proxy. Nothing to do with the server.
*
* @aram name usernane
*/
public String get RoomName ();
/**
* Returns the registered user names array |ocated in the server.
*
* @eturn usernanes array
*/
public String [] getList ();
}

J.Noguera

36

FADA tutorial - Annex A

Do-it-yourself

Userlist

/*

* Created on 14-jun-2004

*

* This file is part of the FADA tutorial
*/

package net. fada. exanpl es. upt oyou;

inport java.io.|OException;
inmport java.net. Server Socket ;
inmport java.net. Socket;
inmport java.util.Arraylist;
inmport java.util.Collection;
inport java.util.lterator;

/**

* Inplements a sinple server with a sinple comunication protocol .

*

* This server allow external prograns to add or renpve users froman internal |ist.
It also prints a |ist of registered users to the standard out put.

*

*

Al input nessages begin with one character: (A)dd, (R)emove, (L)ist or (Quit and
their length has to be, as a maximun, 20 characters |ong.

*

*

Bel | ow you can see the list of all nessages that can be processed by the server:
* A username: add the usernanme to the list if it does not exist yet.
* R username: renove the username formthe list if it exists.

* L : prints a list with registered usernames to standard output.

* Q Doquit.

*

* To run the server you only need to run this class. If no parameter is passed the server will listen

*

on the default port (2727).

*

* @ut hor bob

*/

public class UserList extends Thread

{

private static final int DEFAULT_PORT = 2727,
private int port;

private Col |l ection names = new ArrayList ();

[**

* Creates a server instance that will |isten on <code>port</code>
*

* @aramport |istenig port

*
/
public UserList (int port)
{
this.port = port;
}

| **

* @ee java.lang. Thread#run()
*

*/

public void run ()

{
Systemout.println ("UserList server started...");
try {

/1 Initialize ServerSocket
Server Socket ssocket = new Server Socket (port);

bool ean end = false; // Do not end yet.
byte [] command = new byte [20];

while (!end) {

J.Noguera 37

FADA tutorial - Annex A

/1 Wit for someone
Socket client = ssocket.accept();

/1l Read command
int len = client.getlnputStrean().read(conmand);

if (len <0) {
client.getQutputStrean().close ();
conti nue;
}
Systemout. println("command: " + new String (command, 0, len));

/1 Get the argunent (if exists)
String argument = new String (command, 1, len -1).trin();

/| Execute the apropiate action
switch ((int) command[0]) {
case 'A':
/1 Add the username to the Collection
/1 Only if name do not exists yet
if ((argument != null) && (!names.contains(argunent))) {
names. add(ar gunent) ;
}

br eak;

case 'R :
/1 Renmpve the username formde Collection
nanes. renove(new String (command, 1, len -1).trin());
br eak;

case 'L':
/1 List the registered user |ist
StringBuffer response = new StringBuffer ();

/1 Sinmbol '# is the separator token
for (lterator it = nanes.iterator(); it.hasNext();) {
response. append(it.next() + "#");

/1 Wite the list and send results

Systemout. println("USER LI ST: " + response);
client.getQutputStrean().wite(response.toString().getBytes());
break;

case 'Q:
/1 Stop the server
end = true;
br eak;

/1 COose client socket.
client.getQutputStrean().close ();

}
catch (1 CException e) {
e.printStackTrace();

Systemout.println ("UserList server finished");

[**
* Main nmethod with paranmeters needed.
* Paraneters:
* - arg[0]: OPTIONAL. listening port (default 2727)

*

* @aramarg argunents
*/
public static void main (String[] arg)

{
/1 Allways print help

help ();

J.Noguera 38

FADA tutorial - Annex A

I/l Get port if param exists
int port = DEFAULT_PORT;
if (arg.length > 0) {
try {
port = Integer.parselnt(arg[0]);

}
catch (Nunber For mat Exception e) { /* nop */ }

/1 Start the server
User Li st nmyRegi ster = new UserList (DEFAULT_PORT);
nmyRegi ster.start();

/1 Do nothing untill someone send 'Q throw socket or CTRL+C key is pressed.

R

* Wites help to the standard out put

*

*/

private static void help ()

{
Systemout.println("Register a sevice into a FADA node (J2EE version)");
System out. println("Usage");
Systemout.println("java net.fada. exanpl es.j2ee. Register [port]");
Systemout.printin("\tport: listening port (default port is 2727)");
Systemout.printIn(“\nie. java net.fada. exanpl es.j 2ee. Regi ster 2727\n");

}

UserListProxy

/

*

* Created on 15-jun-2004

*

* This file is part of the FADA tutorial
*/

package net. fada. exanpl es. upt oyou;

/

nmport java.io.| OException;

nmport java. net. Socket;

nmport java. net.UnknownHost Excepti on;
nmport java.util.StringTokenizer;

nmport net.fada. exanpl es. Renot eUser Li st ;

* %

* This proxy will be registered into a FADA node and will enable the conunication
* between the client an the server (UserList in this case).

*

This proxy knows how to "speak" with the server, where it is and where it is |istening.
This class inplenments the apropiate protocol to send conmands and recive information
fromthe server. The client will download this proxy forma FADA node and autonatically
can conmuni cate with the server not knowi ng where the server is or what the conmmunication
protocol is.

*

*

*

*

*

In this case the <code>User Li st Proxy</code> class wi |l comunicate with the server via socket.

*

@ut hor bob
*/

public class UserListProxy inplenents RenoteUserList, java.io.Serializable

{

J

private String roonmName;
private String ip;
private int port;

%%

* Enpty constructor necessary for serialization

*/
public UserlListProxy ()
{

.Noguera

39

FADA tutorial - Annex A

* Creates a new instance to be registered into a FADA node, specifying the
* <code>addr ess</ code> and the <code>port</code> where the server will be waiting.
* <code>r oonmName</code> is an internal identifier not used in the comunication
* process.
*
* @ar am r oonNane
* @aram addr ess
* @aram port
*/
public UserListProxy (String roomNane, String address, int port)
{
this.roonName = roonName;
this.ip = address;
this.port = port;

/**
* Communi cates directly with the server and sends the appropi ate conmand

* to register the <code>nane</code>
*

* @aram name user nane

*
/
public void addUser (String name)
{

send ("A " + name);
}
/**

* Communi cates directly with the server and sends the appropi ate command
* to unregister the <code>nane</code>

*

* @aram name user nane

*/
public void renpveUser(String name)
{
send ("R " + name);
}
/**

* Cets the <code>roomNane</code>. This nethod does not need a communication
* whith the server.

*

* @aram nane user nanme

*
/
public String get RoomNane()
{

return roomNarme;
}
/**

* Communi cates directly with the server and sends the appropi ate conmand
* to get the registered user list
* @eturn usernanmes array.
*/
public String[] getList()
{
String[] response = null;
int i =0;

StringTokeni zer nanelist = new StringTokeni zer(send ("L"), "#", false);

/1l 1f there are results
if (namelist !'=null) {
/Il Allocate array size for response and fill it
response = new String [nanelist.countTokens()];
whi | e (namelist. hasMoreTokens()) {
response[i ++] = namelist.next Token();

J.Noguera

40

| **

return response;

* Sends a conmand to the server via socket.

*

* @aramtext command to send

* @eturn server response or null if there are no response.
*/

private String send (String text)

{

StringBuffer response = new StringBuffer ();

try {

}

/| Conectanps y escri bi nos
Socket client = new Socket (ip, port);
client.getQutputStrean().wite(text.getBytes());

/| Esperanps respuesta si |a hay

int ¢ =0;

while ((c = client.getlnputStrean().read()) > -1) {
response. append((char) c);

client.close();

catch (UnknownHost Exception e) {

}

e.printStackTrace();

catch (1 CException e) {

e.printStackTrace();

return response.toString();

public static void main (String [] arg)

{

UserLi st Proxy p = new UserlListProxy ("hola", "B", 3);

p. get RoonNane() ;

Register

I *

* Created on 15-jun-2004

*

* This file is part of the FADA tutorial

*/

package net. fada. exanpl es. upt oyou;

i nport
i nport
i nport

i nport
i nport
i mport
i nport
i mport

| **

* Regiters a proxy (net.fada.exanples. uptoyou. UserLi st Proxy)
* classes.

*

* The proxy will

java.io.| OException;
j ava. net. Socket ;
java.security. | nval i dkeyExcepti on;

net.
net.
.fada. directory. tool . FadaLeaseRenewer ;
net.
net.

net

fada. FadaExcepti on;
fada. di rectory. FadaLookupLocat or;

fada. directory. tool . FadaServi cel D;
fada. t ool ki t. FadaHel per;

* and with the roommane "ROOM UserList neke-it-yourself"

* @ut hor bob

J.Noguera

FADA tutorial - Annex A

into a FADA node using FadaHel per

be registered with the entries "userlist_yourself" and "make-it-yoursel f" that

41

*/
public
{

| **

*

*

*

*/

FADA tutorial - Annex A

cl ass Register

Main nethod with paraneters needed.

Par amet er s:

- arg[0]: fada node address "ip:port" (ie. "127.0.0.1:2002")

- arg[1l]: server addresss. The server have to be running (ie. "ny.machine")

- arg[2]: server listener port. Port in which the server is listening (ie. 2727)

- arg[3]: OPTIONAL. Full wurl to the codebase (ie. "http://ny.machi ne/ exanpl e/cl asses.jar")

if no arguments are supplied, help is send to the standard out put.

@aram arg arguments

public static void main(String[] arg)

{

String roonmNane = "ROOM UserList nake-it-yourself";
String [] entries = new String [] {"userlist_yourself", "make-it-yourself"};

/'l check if there are have enough args
if (arg.length < 3) {

help ();

return;

/1 getting argunents

String fadaAddress = arg[0];

String serverAddress = arg[1];

int serverPort = 0;

try {
serverPort = Integer.parselnt(arg[2]);

}

catch (Nunber For mat Exception e) {
Systemout.println (“server_port have to be a number!!");
Systemout.println (arg[2] + "is not a nunber");
help ()
return;

}

String codebase = null;

if (arg.length > 3) {
codebase = arg[3];

}

/1 Create the proxy instance that will be registered into the

UserLi st Proxy proxy = new UserlListProxy (roonNane, serverAddress, serverPort);
try {

/1 Prepare the FadaHel per instance

FadaHel per hel per = new FadaHel per (new FadalLeaseRenewer ());

Il register service into a FADA node.

FadaServicel D id = hel per.register(
new FadalLookupLocat or (fadaAddress).getRegistrar(), // where to find a node
proxy, // proxy (in this case created with fadagen)

nul |, /'l FadaServiceld (if it was register before for exanple)
entries, /1 entries that help the user to find the service
10000L, /1 Renew | ease period (in nmllis)

nul |, /1 SecurityW apper

codebase, /1 codebase where cliend cand find libraries

null); /1 What to do if FADA cannot renew the proxy

Systemout.println("proxy " + proxy.getCass() + " was registered into the FADA node");

Il We will wait till server is up
int kK =0;
while (true) {
Socket s = new Socket (serverAddress, serverPort);
/1 System out. println(k++);
s.close();
try {
Thr ead. sl eep(10000) ;
}
catch (InterruptedException el) {
el.printStackTrace();

J.Noguera 42

FADA tutorial - Annex A

}
catch (FadaException e) {
e.printStackTrace();

catch (1 CException e) {
e.printStackTrace();

catch (Nul | Poi nter Exception e) {
e.printStackTrace();

catch (InvalidKeyException e) {
e.printStackTrace();

catch (d assNot FoundException e) {
e.printStackTrace();

/**
* Wite help to the standard out put
*
*/
private static void help ()
{
Systemout.println("Register a sevice into a FADA node (MAKE-IT- YOURSELF version)");
System out. println("Usage");
Systemout.println("java net.fada. exanpl es.2ee. Regi ster fada_url server_address server_port [codebase]");
Systemout.println("\tfada_address: address and port to the fada node in the \"ip:port\" format");
Systemout.println("\tserver_address: name or ip to the server");
Systemout.println("\tserver_port: port to the server");
Systemout. println("\tcodebase: full url to the codebase");

Systemout.printIn("\nie. java net.fada.exanples.j2ee.Register 127.0.0.1:2002 ny.nachine 2727
http://ny. machi ne/ exanpl e/ cl asses.jar\n");

}

J.Noguera 43

FADA tutorial - Annex A

Fadagen
UserRemoteListWithStub

/*
* Created on 15-jun-2004

* This file is part of the FADA tutorial
* wwv. f adanet . org
*/

package net.fada. exanpl es. f adagen;

%%

* Defines the nmethods to be inplemented by fadagen library for comunication.
* This interface will be used by fadagen library to create stub and skel eton cl ases.

*

*

There is one big diference between this class and <code>Renot eUser Li st <code> cl ass.

This difference is that this interface defines the service (in the server side), not the
proxy. This is why <code>get RoonNane</ code> nethod is not defined, because roonNane

is not a server variable (it is a proxy variable).

*
*
*
*

*

@ut hor bob (javi er.noguera@ echi deas. i nf 0)

*/

public interface RenoteUserListWthStub extends net.fada.renpte. Renote

{
/**
* Regi sters one <code>name</code> into the server. If the usernane is already registered,
* do not hing
*
* @aram name user nane
*/
public void addUser (String nane) throws net.fada.renote. Renot eExcepti on;
/**
* Unregi ster one <code>nane</code> into the server. If the username is not registered,
* do not hi ng.
*
* @aram name user nane
*/
public void renoveUser (String nane) throws net.fada.renote. Renot eException;
**
* Returns the registered user names array |ocated in the server.
*
* @eturn usernanes array
*/
public String [] getList () throws net.fada.renote. Renpt eExcepti on;

}

UserList

/*
* Created on 15-jun-2004

*

* This file is part of the FADA tutorial
* wwv. f adanet . org
*/

package net.fada. exanpl es. f adagen;

import net.fada.renpte. Renot e(bj ect;
inport java.util.Arraylist;

inport java.util.Collection;

inport java.util.lterator;

inport net.fada.renote. Renot eExcepti on;

| **

* |mpl emrents the server interface.

*

* This class will run as server. It is needed to tun fadagen to generate a stub and

J.Noguera 44

FADA tutorial - Annex A

* a skeleton for it.

* Listening port will be supplied just before trying to register it in the FADA node.
*
* @ut hor bob (javier.noguera@ echideas.info)
*/
public class UserList extends RenoteObject inplenments RenoteUserListWthStub
{

private Col |l ection names = new ArrayList ();

/**
* Adds <code>nane</code> to the registered users |ist.
*
* (@aram name any name
*/
public void addUser (String nane) throws RenoteException
{

/1 Only if it does not exists

if (!nanes. contains(nane)) {

nanes. add(nane) ;

} }

/**

* Renobves <code>name</code> fromthe registered user |ist.
*

* @aram nane any nane

*/

public void renoveUser (String name) throws RenoteException

{

nanes. renove(name) ;

/**
* Cets a registered user nanes array.
*
* @eturn usernanes array
*/
public String[] getList() throws RenoteException
{
/Il Allcate the array size
String [] result = new String [nanes.size()];
int i =0;

/1 Get all nanes in the Collection
for (lterator it = nanes.iterator(); it.hasNext();) {
result [i++] = (String) it.next();

return result;

UserListProxy

/*
* Created on 15-jun-2004
*
* This file is part of the FADA tutorial
* wwv. f adanet . org
*/
package net.fada. exanpl es. f adagen;

import net.fada.renpte. Renot eExcepti on;

] **
* This proxy will be registered into a FADA node and will enable the conunication
* between the client an the server (UserList in this case).
*
* This proxy knows how to "speak"” with the server, where it is and where it is |istening.
* This class inplenents the apropiate protocol to send commands and recive information
* fromthe server. The client will download this proxy forma FADA node and automatically

J.Noguera 45

FADA tutorial - Annex A

* can comunicate with the server not know ng where the server is or what the communication
* protocol is.

*

* In this case the <code>User Li st Proxy</code> class will communicate with the server via socket.
*

* @ut hor bob (javier.noguera@ echi deas. i nfo)
*/
public class UserlListProxy inplenments net.fada. exanpl es. Renot eUserLi st, java.io.Serializable

{
private RenoteUserLi st WthStub stub;
private String roonmName;

%%

* Enpty constructor necessary for serialization

*

*/
public UserlListProxy ()
{
/* nop */
}
/**

* Creates a new instance to be registered into a FADA node, specifying the
<code>addr ess</ code> and the <code>port</code> where the server will be waiting.
* <code>roomNane</code> is an internal identifier not used in the comunication

* process.

*

* @ar am r oomNane
* @aram addr ess
* @aram port
*/
public UserListProxy (RenoteUserListWthStub stub, String rooniName)
{
this.stub = stub;
this.roonName = roonName;

] **
* Communi cates directly with the server and sends the appropi ate conmand
* to register the <code>name</code>
*

* (@aram name user nane
*/
public void addUser (String nane)
{
try {
stub. addUser (nane) ;
} catch (RenoteException e) {
e.printStackTrace();

/**
* Communi cates directly with the server and sends the appropi ate command
* to unregister the <code>name</code>
*
* (@aram name user name
*/
public void renoveUser(String name)
{
try {
stub. renpbveUser (nane);
} catch (RenoteException e) {
e.printStackTrace();

] **

* Gets the <code>roonNane</code>. This method does not need a conmunication
* whith the server.

*

* @aram name usernane

*/

public String get RoonNane()

J.Noguera

46

FADA tutorial - Annex A

return roonNane;

/**
* Communi cates directly with the server and sends the appropi ate command
* to get the registered user |ist
*
* @eturn usernames array.
*/
public String[] getList()
{
String[] response = null;
try {
response = stub.getList();
} catch (RenoteException e) {
e.printStackTrace();

return response;

RegisterFadagen

/*

* Created on 15-jun-2004

*

* This file is part of the FADA tutorial
* www. f adanet. org

*/

package net. fada. exanpl es. f adagen;

inport java.io.|COException;
inmport java.security.|nvalidKeyException;

import net.fada. FadaExcepti on;

inport net.fada.directory. FadaLookuplLocator;
inmport net.fada.directory.tool.FadaLeaseRenewer;
inmport net.fada.directory.tool.FadaServicel D
import net.fada.tool kit.FadaHel per;

inmport net.fada.transport.CientTransport;
inmport net.fada.transport.CientTransportlnpl;
inmport net.fada.transport. ServerTransport;
inmport net.fada.transport. ServerTransport!npl;

xx
* Register a service into a FADA node.
*
* This code is part of an exanple in which:
* - The server is a stand-alone class converted into server by <code>fadagen |ibraries</code>
* - The comunication with the servliet is done with <i>fadagen</i>
*
* @ut hor bob (javier.noguera@ echi deas. info)
*/
public class RegisterFadagen
{
xx
* Main nethod with paraneters needed.
* Paraneters:
* - arg[0]: fada node address "ip:port" (ie. "127.0.0.1:2002")
* - arg[1]: full url to the serviet will be listening (ie. "http://ny. machi ne/ exanpl e/ j2ee")
* - arg[2]: OPTIONAL. Full url to the codebase (ie. "http://ny.machi ne/ exanpl e/ cl asses.jar")
* - arg[3]: OPTIONAL. Endpoint of the server. Default value is /fadagen
* - arg[4]: OPTIONAL. Server port. Default value is 2727

* if no arguments are supplied, help is send to the standard out put.
*

* @aram arg arguments
*/
public static void main(String[] arg)

{

J.Noguera 47

FADA tutorial - Annex A

String roomName = "ROOM UserList fadagen";

String [] entries = new String [] {"userlist_fadagen", "fadagen_userlist"};
String endpoint = "/fadagen/register";

int port = 2729;

/1 check if we have enough args
if (arg.length < 2) {

help ();

return;

/1 getting argunents

String fadaAddress = arg[O0];
String serverlp = arg[1];
String codebase = null;

/1 Try to get optional paréaneters
if (arg.length > 2) {
codebase = arg[2];
}
if (arg.length > 3) {
endpoint = arg[3];

}
if (arg.length > 4) {
try {
port = Integer.parselnt(arg[4]);
}
catch (Nunber For mat Exception e) { /* nop */}
}
try {
/1 Ejecutanps el servidor
UserLi st nyRegi ster = new UserList ();
/1 Transporte
Server Transport st = new ServerTransportl|npl (port, endpoint);
CientTransport ct = new CientTransportinpl ("http://" + serverlp + ":" + port + endpoint);
/l Create the stub and the proxy
Renot eUser Li st Wt hStub stub = (RenoteUserLi st WthStub) nyRegi ster.export (st, ct);
User Li st Proxy proxy = new UserListProxy (stub, roomNane);
/'l Prepare the FadaHel per instance
FadaHel per hel per = new FadaHel per (new FadalLeaseRenewer ());
/'l register service into a FADA node.
FadaServicel D id = hel per.register(
new FadaLookupLocator (fadaAddress).getRegistrar(), // where to find a node
proxy, // proxy (in this case created with fadagen)
null, /1 FadaServiceld (if it was register before for exanple)
entries, /1 entries that help the user to find the service
10000L, /1 Renew | ease period (in mllis)
nul |, /1 SecurityW apper
codebase, /'l codebase where cliend cand find libraries
null); /1 What to do if FADA cannot renew the proxy
Systemout.println("proxy " + stub.getCass() + " was registered into the FADA node");
}

catch (FadaException e) {
e.printStackTrace();

}

catch (1 CException e) {
e.printStackTrace();

}

catch (Nul | Poi nter Exception e) {
e.printStackTrace();

}

catch (C assNot FoundException e) {
e.printStackTrace();

}

catch (InstantiationException e) {
e.printStackTrace();

}

catch (Il egal AccessException e) {

J.Noguera 48

e.printStackTrace();

}

catch (InvalidKeyException e) {
e.printStackTrace();

| **

* Wite help to the standard out put

*
*/

private static void help ()

{

Systemout . println("Register a sevice into a FADA node (J2EE version)");
System out. println("Usage");

Systemout. println("\tfada_address: address and port to the fada node");

port)");
Systemout. println("\tcodebase: full url to the codebase");
Systemout. println("\tendpoint: default endpoint is /fadagen");
Systemout.println("\tport: default port is 2727");

Systemout. println("\nie. net . f ada. exanpl es. j 2ee. Regi st er 127.0.0. 1: 2002

http://nmy. machi ne/ exanpl e/ cl asses.jar\n");

j2ee

UserRemoteListWithStub

/*

* Created on 15-jun-2004
* This file is part of the FADA tutorial
* www. f adanet. org

*/

package net.fada. exanpl es. j 2ee;

| **

* Defines the nethods to be inplemented by fadagen library for comunication.
* This interface will be used by fadagen library to create stub and skel eton cl ases.

*

* @ut hor bob (javier.noguera@ echi deas. info)
*/
public interface RenoteUserListWthStub extends net.fada.renote. Renote
{
] **
* Regi sters one <code>nane</code> into the server. If the username is already registered,
* do nothing
*
* @aram name username
*/
public void addUser (String name) throws net.fada.renpte. Renpt eExcepti on;

R

* Unregi ster one <code>nane</code> into the server. |If the usernane is not registered,

* do not hi ng.
*

*
*/
public void renpveUser (String nane) throws net.fada.renote. Renot eException;

@ar am name user nane

| **

* Returns the registered user names array |ocated in the server.
*

* @eturn usernanes array
*/
public String [] getList () throws net.fada.renote. Renot eException;

J.Noguera

Systemout. println("java net.fada. exanpl es.j2ee. Regi ster fada_url server_ip [codebase]

FADA tutorial - Annex A

[port]]

Systemout. println("\tserver_address: address of the server to be found by others conputers (w thout

81.91.102. 203

49

FADA tutorial - Annex A

UserList

/*
* Created on 15-jun-2004
*
* This file is part of the FADA tutorial
* www. f adanet . org
*/
package net.fada. exanpl es. j 2ee;

inmport java.io.lOException;

inmport java.io.PrintWiter;

inport java.security.l|nvalidKeyException;
inport java.util.Arraylist;

inport java.util.Collection;

inport java.util.lterator;

inport javax.servlet.ServletConfig;

inport javax.servlet.ServletException;

inmport javax.servlet.http. HtpServletRequest;
inmport javax.servlet.http. HtpServl et Response;

import net.fada. FadaExcepti on;

inmport net.fada.directory. FadaLookupLocat or;
inport net.fada.directory.tool.FadaLeaseRenewer;
inport net.fada.directory.tool.FadaServicel D
inmport net.fada.renote. Renot eExcepti on;

import net.fada.tool kit.FadaHel per;

inport net.fada.transport.CientTransportl!npl;
inport net.fada.transport.FadaHTTPServl et ;

* Servlet used as a service. W can take advantage of the Application Server
* architecture for placing our service.

* It is also useful if we want to use the servlet interface to configure

* servlet paraneters in runtime or to anal yze server progress.

* <code>init</code> nethod is used to register the service.
*
* @ut hor bob (javier.noguera@ echi deas. info)
*/
public class UserlList extends FadaHTTPServl et inplenents RenoteUserListWthStub
{
private String roomName;
private Col |l ection names = new ArrayList ();

] **
* Registers the service in the FADA node. Sone init paraneters are
* necessary:

* - room.nane

* - fada_address

* - end_point

* - codebase

* @ee javax.servlet.Servlet#init(javax.servlet.ServletConfig)
*/

public void init(ServletConfig config) throws ServletException

{

super.init(config);

/1 Inicializanps el servicio en FADA
String roonNane = config.getlnitParanmeter("roomnane");
String [] entries = new String [] {"userlist_j2ee", "userlist_servlet"};

/1 getting argunents

String fadaAddress = config.getlnitParanmeter("fada_address");

String servletU |l = config.getlnitParaneter("end_point");

String codebase = config.getlnitParaneter("codebase"); //http://192.168.0.121/registerFada.jar";

try {
CientTransportinpl trans = new CientTransportlnpl (servietUrl);

J.Noguera 50

FADA tutorial - Annex A

/1 Create the stub and the proxy
Renot eUser Li stWthStub stub = (RenpteUserLi st WthStub) this.export (this, trans);
UserLi st Proxy proxy = new UserListProxy (stub, roonNane);

/'l Prepare the FadaHel per instance
new FadaHel per (new FadalLeaseRenewer());

FadaHel per hel per =

/] register service into a FADA node.
FadaServicel D id = hel per.register(
new FadalLookupLocat or (fadaAddress).getRegistrar(), // where to find a node

proxy,
nul I,
entries,
10000L,
nul |,
codebase,
null);

System out. println("proxy "

}
catch (FadaException e)
e.printStackTrace();

catch (1 OException e) {
e.printStackTrace();

{

/1 proxy (in this case created with fadagen)

/1 FadaServiceld (if it was register before for exanple)
/1 entries that help the user to find the service

/1 Renew | ease period (in mllis)

/1 SecurityW apper

/1 codebase where cliend cand find libraries

/1 What to do if FADA cannot renew the proxy

+ stub.getClass() + " was registered into the FADA node");

catch (Nul | Poi nter Exception e) {

e.printStackTrace();

catch (d assNot FoundException e) {

e.printStackTrace();

catch (Instantiati onException e) {

e.printStackTrace();

catch (111 egal AccessException e) {

e.printStackTrace();

catch (InvalidKeyException e) {

e.printStackTrace();

}
}
/**
* Gee javax.servlet. http. H t pServl et #doGet (j avax. servl et. http. H t pSer vl et Request,
javax.servlet. http. Ht pServl et Response)
*/
public void doGet(HttpServletRequest request, HtpServletResponse response) throws ServletException,
| OExcepti on
{
response. set Cont ent Type(“text/htm");
PrintWiter out = response.getWiter();
/1 Header
out.println ("<htm>");
out.println ("Userlist:
<hr>");
/1 Print all nanes
for (lterator it = nanes.iterator(); it.hasNext();) {
out.println (" - " + it.next() + "
");
}
/1 Footer
out.println("<hr>");
out.println ("</htm>");
}
[**

* @ee fadagen. Renot eUser Li st Wt hSt ub#r egi ster(java.lang. String)

*/

public void addUser (String name) throws RenpteException

J.Noguera

51

{
/1 Si NO existe, |o guardanps
if (!names.contains(nane)) {
nanes. add(nane) ;
}
}
xx

* @ee fadagen. Renot eUser Li st Wt hSt ub#unr egi ster(j ava. | ang. String)

*/
public void renpveUser (String nane) throws RenpteException
{
names. r enove(name) ;
}
xx

* @ee fadagen. Renot eUser Li st Wt hSt ub#get Li st ()

*/
public String[] getList() throws RenoteException
{
/'l Creanps el array de salida
String [] result = new String [nanes.size()];
int i =0;
/1 Recorrenps todos |os nonbres
for (lterator it = nanes.iterator(); it.hasNext();) {
result [i++] = (String) it.next();
}
return result;
}

UserListProxy

/*
* Created on 15-jun-2004
* This file is part of the FADA tutorial
* ww. f adanet . org
*/

package net.fada. exanpl es. j 2ee;

inmport net.fada.renote. Renot eExcepti on;

* This proxy will be registered into a FADA node and will enable the conunication
* between the client an the server (UserList in this case).

* This proxy knows how to "speak"” with the server, where it is and where it is |istening.

* This class inplements the apropiate protocol to send commands and recive information

* fromthe server. The client will download this proxy forma FADA node and automatically

* can communi cate with the server not knowi ng where the server is or what the comunication
* protocol is.

* In this case the <code>UserLi st Proxy</code> class will communicate with the server via socket.

*
* @ut hor bob (javier.noguera@ echideas. info)
*/

public class UserlListProxy inplenments net.fada.exanpl es. RenoteUserList, java.io.Serializable

{
private RenoteUserLi st WthStub stub;

private String roomNarme;

| **

* Enpty constructor necessary for serialization
*

*
/
public UserlListProxy ()

{
/* nop */

J.Noguera

FADA tutorial - Annex A

52

FADA tutorial - Annex A

/**

* Creates a new instance to be registered into a FADA node, specifying the
<code>addr ess</ code> and the <code>port</code> where the server will be waiting.
* <code>roomNane</code> is an internal identifier not used in the comunication
* process.

*

* @ar am r oonNane
* @aram addr ess
* @aram port
*/
public UserlListProxy (RenoteUserListWthStub stub, String roonNane)
{
this.stub = stub;
this.roonName = roonName;

/**
* Communi cates directly with the server and sends the appropi ate conmand
* to register the <code>name</code>
*
* @aram name usernane
*/
public void addUser (String name)
{
try {
stub. addUser (nane) ;
} catch (RenoteException e) {
e.printStackTrace();

/**
* Communi cates directly with the server and sends the appropi ate command
* to unregister the <code>name</code>
*
* (@aram name user name
*/
public void renoveUser(String name)
{
try {
stub. renoveUser (nane);
} catch (RenoteException e) {
e.printStackTrace();

/**
* Gets the <code>roonNane</code>. This method does not need a conmunication
* whith the server.

*

* @aram name user nane

*/
public String get RoomNane()
{
return roonNaneg;
}
xx

* Communi cates directly with the server and sends the appropi ate command
* to get the registered user |ist
* @eturn usernames array.
*/
public String[] getList()
{
String[] response = null;
try {
response = stub.getList();
} catch (RenoteException e) {
e.printStackTrace();

J.Noguera

53

return response;

J.Noguera

FADA tutorial - Annex A

54

J.Noguera

FADA tutorial -

55

